Цифровой шлюз
SMG-4, SMG-2

Руководство по эксплуатации, версия 2.5 (07.08.2018)
Версия ПО 3.1.7.1230
<table>
<thead>
<tr>
<th>Версия документа</th>
<th>Дата выпуска</th>
<th>Содержание изменений</th>
</tr>
</thead>
<tbody>
<tr>
<td>Версия 2.5</td>
<td>07.08.2018</td>
<td>Добавлено:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Статистика CAPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Выгрузка конфигурации по протоколам FTP/TFTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Управление и мониторинг по протоколу SNMP</td>
</tr>
<tr>
<td>Версия 2.4</td>
<td>05.04.2017</td>
<td>Обновлено:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Настройки кодировок и способов передачи имени абонента в Q.931</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Вставка remote name в заголовок Contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Транзит каналов потока ОКС-7 через полупостоянное соединение</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Поддержка передачи имени в кодировках AVAYA, Siemens, Windows-1251, Translit и Unicode (UTF-8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Поддержка способов передачи имени QSIG, Q.931 Display, CorNet и AVAYA Display</td>
</tr>
<tr>
<td>Версия 2.3</td>
<td>15.08.2016</td>
<td>Обновлены часовые пояса</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Добавлены:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Параметры использования STUN-сервера;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Настройка Public IP;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Настройка Clear Channel (CLEARMODE);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— Английский язык WEB-интерфейса</td>
</tr>
<tr>
<td>Версия 2.2</td>
<td>05.04.2016</td>
<td>Добавлена настройка режимов маршрутизации при транковой регистрации для SIP-интерфейсов</td>
</tr>
<tr>
<td>Версия 2.1</td>
<td>26.11.2015</td>
<td>Добавлена регистрация интерфейсов SIP</td>
</tr>
<tr>
<td>Версия 2.0</td>
<td>22.06.2015</td>
<td>Вторая публикация</td>
</tr>
<tr>
<td>Версия 1.0</td>
<td>12.08.2014</td>
<td>Первая публикация</td>
</tr>
</tbody>
</table>
УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

<table>
<thead>
<tr>
<th>Обозначение</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibri</td>
<td>Полужирным шрифтом выделены примечания и предупреждения, название глав, заголовков, заголовков таблиц.</td>
</tr>
<tr>
<td>Calibri</td>
<td>Курсивом указывается информация, требующая особого внимания.</td>
</tr>
<tr>
<td>Courier New</td>
<td>Шрифтом Courier New записаны примеры ввода команд, результат их выполнения, вывод программ.</td>
</tr>
<tr>
<td><KLAVISHA></td>
<td>Заглавными буквами в угловых скобках указываются названия клавиш клавиатуры.</td>
</tr>
<tr>
<td>Значок аналогового</td>
<td>Значок аналогового телефонного аппарата.</td>
</tr>
<tr>
<td>телефонного</td>
<td></td>
</tr>
<tr>
<td>аппарата.</td>
<td></td>
</tr>
<tr>
<td>Значок цифрового</td>
<td>Значок цифрового шлюза SMG</td>
</tr>
<tr>
<td>шлюза SMG</td>
<td></td>
</tr>
<tr>
<td>Значок программного</td>
<td>Значок программного коммутатора Softswitch ECSS-10</td>
</tr>
<tr>
<td>коммутатора</td>
<td></td>
</tr>
<tr>
<td>Softswitch</td>
<td></td>
</tr>
<tr>
<td>ECSS-10</td>
<td></td>
</tr>
<tr>
<td>Значок цифровой</td>
<td>Значок цифровой абонентской телефонной станции.</td>
</tr>
<tr>
<td>абонентской</td>
<td></td>
</tr>
<tr>
<td>телефонной</td>
<td></td>
</tr>
<tr>
<td>станции.</td>
<td></td>
</tr>
<tr>
<td>Значок «подключение</td>
<td>Значок «подключение к сети».</td>
</tr>
<tr>
<td>к сети».</td>
<td></td>
</tr>
<tr>
<td>Оптическая среда</td>
<td>Оптическая среда передачи.</td>
</tr>
<tr>
<td>передачи.</td>
<td></td>
</tr>
</tbody>
</table>

Примечания и предупреждения

Примечания содержат важную информацию, советы или рекомендации по использованию и настройке устройства.

Предупреждения информируют пользователя о ситуациях, которые могут нанести вред устройству или человеку, привести к некорректной работе устройства или потере данных.
ЦЕЛЕВАЯ АУДИТОРИЯ

Данное руководство по эксплуатации предназначено для технического персонала, выполняющего настройку и мониторинг шлюза посредством WEB-конфигуратора, а также процедуры по установке и обслуживанию устройства. Квалификация технического персонала предполагает знание основ работы стеков протоколов TCP/IP, UDP/IP и принципов построения Ethernet-сетей.
СОДЕРЖАНИЕ

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ .. 3
ЦЕЛЕВАЯ АУДИТОРИЯ ... 4
ВВЕДЕНИЕ .. 9
1 ОПИСАНИЕ ИЗДЕЛИЯ .. 10
1.1 Назначение ... 10
1.2 Типовые схемы применения .. 11
1.2.1 Сопряжение сигнализаций и медиапотоков TDM и VoIP сетей ... 11
1.3 Структура и принцип работы изделия .. 12
1.4 Основные технические параметры ... 14
1.5 Конструктивное исполнение ... 15
1.6 Световая индикация .. 16
1.7 Использование функциональной кнопки F .. 19
1.8 Комплект поставки .. 21
1.9 Инструкции по технике безопасности .. 21
1.9.1 Общие указания .. 21
1.9.2 Требования электробезопасности ... 21
2 УСТАНОВКА SMG ... 22
2.1.1 Порядок включения .. 22
2.1.2 Вскрытие корпуса .. 22
2.1.3 Замена батарейки часов реального времени ... 23
3 ОБЩИЕ РЕКОМЕНДАЦИИ ПРИ РАБОТЕ СО ШЛЮЗОМ .. 24
4 КОНФИГУРИРОВАНИЕ УСТРОЙСТВА .. 25
4.1 Настройка SMG через web-интерфейс ... 25
4.1.1 Системные параметры .. 28
4.1.1.1 Формат опций 6b и 67 .. 29
4.1.1.2 Формат файла smg4.manifest (smg2.manifest) ... 30
4.1.1.3 Алгоритм автоматической загрузки конфигурации и проверки актуальности файла конфигурации ... 31
4.1.1.4 Алгоритм работы функции автоматического обновления и проверки актуальности ПО .. 32
4.1.2 Мониторинг ... 33
4.1.2.1 Телеметрия ... 33
4.1.2.2 Мониторинг потоков E1 .. 33
4.1.2.3 Мониторинг каналов E1 .. 35
4.1.2.4 График загруженности процессора ... 36
4.1.2.5 Мониторинг VoIP субмодулей ... 37
4.1.2.6 Сигнализация об авариях. Журнал аварийных событий ... 39
4.1.2.7 Мониторинг интерфейсов ... 41
4.1.3 Источники синхронизации ... 41
4.1.4 CDR-записи ... 42
4.1.4.1 Формат CDR-записи .. 44
4.1.4.2 Пример CDR файла ... 45
4.1.4.3 Структура CDR-записей при различных настройках ... 45
4.1.5 Потоки E1 ... 47
4.1.5.1 Выбор протокола сигнализации ... 47
4.1.5.2 Настройка физических параметров .. 47
4.1.5.3 Настройка протокола сигнализации Q.931 ... 48
4.1.5.4 Настройка протокола сигнализации ОКС-7 (SS7) ... 51
4.1.6 План нумерации .. 53
4.1.6.1 Описание маски номера и ее синтаксис ... 57
4.1.6.2 Примеры работы маски .. 58
4.1.6.3 Пример работы таймеров .. 59
4.1.7 Маршрутизация ... 59
4.1.7.1 Транковые группы ... 59
4.1.2 Группы линий ОКС-7 ... 61
4.1.2.1 Примеры ... 65
4.1.3 Интерфейсы SIP/SIP-T/SIP-I .. 66
4.1.3.1 Конфигурация ... 66
4.1.4 Вкладка Настройка интерфейсов SIP .. 69
4.1.5 Вкладка Настройка протокола SIP .. 71
4.1.6 Вкладка Настройка кодеков RTP ... 74
4.1.7 Вкладка Настройка факса и передача данных 77
4.1.8 Транковые направления ... 79
4.1.9 Сетевые сервисы ... 80
4.1.10 Категории ОКС ... 80
4.1.11 Категории доступа .. 80
4.1.12 Таблицы модификаторов .. 81
4.1.13.1 Синтаксис правил модификации .. 83
4.1.13.2 Настройки syslog .. 87
4.1.13.3 Трассировки .. 87
4.1.13.4 Профили firewall ... 89
4.1.13.5 Список разрешенных IP-адресов 89
4.1.14 Диапазон RTP-портов ... 90
4.1.15 Безопасность ... 94
4.1.16 Настройка SSL/TLS .. 94
4.1.17 Fail2ban ... 95
4.1.18 Список разрешенных IP-адресов 98
4.1.19 Сетевые утилиты ... 98
4.1.20 PING .. 98
4.1.13 Настройка RADIUS .. 99
4.1.13.1 Серверы RADIUS .. 99
4.1.13.2 Список профилей .. 100
4.1.13.2.1 Формат пакетов RADIUS .. 103
4.1.13.3 Описание переменных .. 105
4.1.14.1 PCAP трассировки ... 107
4.1.14.2 Tracassировка PBX .. 109
4.1.14.3 Настройки syslog .. 110
4.1.15 Работа с объектами и меню «Объекты» ... 111
4.1.16 Сохранение конфигурации и меню «Сервис» 111
4.1.17 Установка даты и времени ... 111
4.1.18 Обновление ПО через web-интерфейс 111
4.1.19 Обновление лицензии ... 112
4.1.20 Меню «Помощь» .. 112
4.1.21 Установка пароля для доступа через WEB конфигуратор 113
4.1.22 Просмотр заводских параметров и информации о системе 114
4.1.23 Выход из конфигуратора .. 114
4.2 Командная строка, перечень поддерживаемых команд и ключей 114
4.2.1 Система команд для работы со шлюзом SMG в режиме отладки ... 115
4.2.2 Команды трассировки, доступные через отладочный порт .. 116
 4.2.2.1 Глобальное включение отладки ... 116
 4.2.2.2 Глобальное выключение отладки ... 116
 4.2.2.3 Включение/выключения отладки для определенных аргументов 116
4.3 Настройка SMG через Telnet, SSH или RS-232 .. 117
 4.3.1 Перечень команд CLI ... 117
 4.3.2 Смена пароля для доступа к устройству через CLI .. 119
 4.3.3 Режим «Статистика» ... 119
 4.3.3.1 Вход в режим просмотра статистики .. 120
 4.3.3.2 Перевод в режим просмотра объема сигнального трафика MTP (OKS-7) 120
 4.3.3.3 Параметры, используемые в командах просмотра статистики трафика MTP 120
 4.3.3.4 Просмотр общего состояния трафика MTP ... 120
 4.3.3.5 Просмотр сигнального трафика (MTP message accounting) 120
 4.3.3.6 Просмотр счетчиков неисправностей и производительности сигнального звена (MTP signalling link faults and performance) .. 120
 4.3.3.7 Просмотр времени недоступности сигнального звена (MTP signalling link availability) 121
 4.3.3.8 Просмотр показателей использования сигнального звена (MTP signalling link utilization) ... 121
 4.3.3.9 Просмотр показателей доступности группы линий (MTP signalling link set and route set availability) .. 122
 4.3.3.10 Просмотр состояния пункта сигнализации (MTP signalling point status) 122
 4.3.3.11 Переход в режим просмотра пакетного трафика ... 123
 4.3.3.12 Просмотр статистических данных по качеству обслуживания пакетного трафика 123
 4.3.4 Режим управления ... 123
 4.3.4.1 Режим управления потоком OKS-7 ... 124
 4.3.5 Режим конфигурирования общих параметров устройства .. 125
 4.3.6 Режим конфигурирования параметров CDR ... 128
 4.3.7 Режим конфигурирования категорий доступа ... 129
 4.3.8 Режим конфигурирования потока E1 .. 130
 4.3.8.1 Режим конфигурирования параметров LAPD для текущего потока E1 131
 4.3.8.2 Режим конфигурирования сигнализации Q931 для текущего потока E1 131
 4.3.8.3 Режим конфигурирования параметров сигнализации OKS 7 для текущего потока E1 132
 4.3.9 Режим конфигурирования параметров Fail2ban ... 133
 4.3.10 Режим конфигурирования параметров firewall ... 134
 4.3.10.1 Режим конфигурирования параметров FTP .. 137
 4.3.11 Режим конфигурирования группы линий OKS 7 ... 138
 4.3.12 Режим конфигурирования таблицы модификаторов ... 139
 4.3.13 Режим конфигурирования сетевых параметров ... 142
 4.3.13.1 Режим конфигурирования протокола NTP ... 146
 4.3.13.2 Режим конфигурирования протокола SNMP .. 146
 4.3.14 Режим конфигурирования плана нумерации ... 147
 4.3.14.1 Режим конфигурирования префикса ... 148
 4.3.14.2 Режим конфигурирования масок префикса ... 150
 4.3.15 Режим конфигурирования таймеров Q.931 .. 151
 4.3.16 Режим конфигурирования RADIUS ... 152
 4.3.16.1 Режим конфигурирования параметров профиля RADIUS 153
 4.3.17 Режим конфигурирования статических маршрутов .. 156
 4.3.18 Режим редактирования общих настроек SIP/SIP-T ... 157
 4.3.19 Режим конфигурирования параметров интерфейса SIP/SIP-T 158
 4.3.20 Режим конфигурирования преобразования категорий OKS-7 162
 4.3.21 Режим конфигурирования таймеров OKS-7 .. 163
 4.3.22 Режим конфигурирования параметров синхронизации sync 164
 4.3.23 Режим конфигурирования параметров syslog .. 165
 4.3.24 Режим конфигурирования транспортных групп и транспортных направлений 166
 ПРИЛОЖЕНИЕ А. НАЗНАЧЕНИЕ КОНТАКТОВ РАЗЪЕМОВ КАБЕЛЯ .. 169
Приложение Б. Резервное обновление встроенного по устройствам................................. 170
Приложение В. Примеры работы модификаторов и настройки устройства через CLI 173
Приложение Г. Взаимосвязь параметров маршрутизации, абонентов и SL.......................... 183
Приложение Д. Рекомендации по работе SMG в публичной сети.. 184
Приложение Е. Взаимодействие устройства с системами мониторинга................................... 185
Приложение Ж. Настройка транзита каналов потока E1 через полупостоянное соединение 188
Приложение З. Управление и мониторинг по протоколу SNMP... 193
Техническая поддержка ... 205
ВВЕДЕНИЕ

В мире интенсивно развиваются средства связи, эксплуатирующие самые современные аппаратные и программные решения. При этом возникает проблема внедрения новых устройств связи, использующих другие принципы передачи информации, в существующие сети связи. Решение — в применении специального оборудования, связывающего разнородные участки сети связи в единое целое. Таким оборудованием в настоящий момент являются цифровые шлюзы. Наличие оного позволяет проводить постепенный переход от существующей сети связи на сети связи, имеющие более эффективную реализацию, но работающую по другим принципам.

На данный момент наиболее эффективными сетями являются IP-сети, которые слабо зависят от среды передачи данных и от типа данных, вместе с тем являются наиболее гибкими и управляемыми. Для сопряжения традиционных сетей связи, в основе которых лежит принцип коммутации каналов, с сетями связи, использующими для передачи информации IP-сети, предназначены цифровой шлюз SMG, разработанный и производимый предприятием «ЭЛТЕКС».

Данное руководство содержит сведения об основных свойствах SMG-2 и SMG-4. В документе приведены технические характеристики шлюза и его компонентов. Также предоставлена вводная информация о порядке эксплуатации и обслуживания с использованием программного обеспечения.
1 ОПИСАНИЕ ИЗДЕЛИЯ

1.1 Назначение

Транковый шлюз SMG предназначен для сопряжения сигнализаций и медиапотоков ТСОП (E1) и VoIP сетей. Вызовы VoIP-VoIP не поддерживаются.

SMG является оптимальным надежным решением для задач обновления, построения и миграции телекоммуникационной инфраструктуры из ТСОП в NGN.

Основные характеристики SMG:

– количество интерфейсов E1:
 – для SMG-2: 1 либо 2;
 – для SMG-4: 4;
– количество каналов VoIP:
 – для SMG-2: 104;
 – для SMG-4: 128;
– максимальная интенсивность нагрузки – 40 cps;
– количество Ethernet-портов:
 – 1 порт 10/100/1000BASE-T;
– поддержка статического адреса и DHCP;
– протоколы IP-телефонии SIP, SIP-T, SIP-I;
– протоколы TDM: ISDN PRI(Q.931), QSIG и CORNET для передачи имени абонента, ОКС-7 (работа в связанном и квазисвязанном режимах);
– передача DTMF (SIP INFO, RFC2833, in-band);
– экокомпенсация (рекомендация G.168);
– детектор речевой активности (VAD);
– генератор комфортного шума(CNG);
– адаптивный и фиксированный джиттер-буфер;
– передача данных V.152;
– передача факса:
 – G.711 pass through;
 – T.38 UDP Real-Time Fax;
– поддержка NTP;
– поддержка DNS;
– поддержка SNMP;
– ToS для RTP и сигнализации;
– обновление ПО: через WEB-интерфейс, CLI (Telnet, SSH, консоль (RS-232));
– автоматическое обновление ПО и конфигурации устройства;
– конфигурирование и настройка (в том числе удаленно):
 • WEB – интерфейс;
 • CLI (Telnet, консоль (RS-232));
– удаленный мониторинг:
 • WEB – интерфейс;
 • SNMP.

Функционал SIP/SIP-T/SIP-I:

– RFC 2976 SIP INFO (для передачи DTMF);
– RFC 3204 MIME Media Types for ISUP and QSIG (поддержка ISUP);
– RFC 3261 SIP;

1 По умолчанию на устройстве SMG-2 доступен только 1 поток E1, для активации второго потока необходимо установить специальную лицензию, подробнее о лицензиях в разделе 4.1.19 Обновление лицензии
– RFC 3262 Reliability of Provisional Responses in SIP (PRACK);
– RFC 3263 Locating SIP servers for DNS;
– RFC 3264 SDP Offer/Answer Model;
– RFC 3265 SIP Notify;
– RFC 3311 SIP Update;
– RFC 3323 Privacy Header;
– RFC 3325 P-Asserted-Identity;
– RFC 3372 SIP for Telephones (SIP-T);
– RFC 3398 ISUP/SIP Mapping;
– RFC 3515 SIP REFER;
– RFC 3581 Symmetric Response Routing;
– RFC 3665 Basic Call Flow Examples;
– RFC 3666 SIP to PSTN Call Flows;
– RFC 3891 SIP Replaces Header;
– RFC 3892 SIP Referred-By Mechanism;
– RFC 4028 SIP Session Timer;
– RFC 4566 Session Description Protocol (SDP);
– RFC 5806 SIP Diversion Header;
– SIP Enable/Disable 302 Responses;
– Q1912.5 SIP-I;
– Взаимодействие SIP и SIP-T/SIP-I;
– Delay offer;

1.2 Типовые схемы применения

В данном руководстве предлагается несколько схем подключения устройства SMG.

1.2.1 Сопряжение сигнализаций и медиапотоков TDM и VoIP сетей

В данной конфигурации устройство обеспечивает возможность подключения до 4 потоков E1 с различными протоколами сигнализации (OKC7, ISDN PRI/QSIG/CORNET) и обслуживания 128 каналов без сжатия (кодек G.711), до 72 канала со сжатием (G.729 A / 20-80) или 54 факсимильных каналов Т.38, максимальная интенсивность нагрузки – 40 cps.

Устройство подключается к IP-сети посредством сетевого интерфейса 10/100/1000 BASE-T по протоколам SIP/SIP-T/ SIP-I.

![Схема подключения SMG-4](image1)

Рисунок 1 – Сопряжение сигнализаций и медиапотоков TDM и VoIP сетей с использованием SMG-4

![Схема подключения SMG-2](image2)

Рисунок 2 – Сопряжение сигнализаций и медиапотоков TDM и VoIP сетей с использованием SMG-2

На рисунке 3 представлена схема сопряжения TDM и VoIP сетей на примере взаимодействия Legacy PBX и программного коммутатора ECSS-10 при помощи шлюзов SMG-2/SMG-4.
На рисунке 4 представлена схема транзита каналов потока E1 через сеть Ethernet полупостоянным соединением.

Функциональная схема SMG представлена на рисунке 5.
В направлении TDM-IP сигнал, поступающий на потоки Е1, через внутрисистемную магистраль подается на аудиокодеки субмодулей VoIP (линия 128 каналов TDM), кодируется по одному из выбранных стандартов и в виде цифровых пакетов отправляется к центральному процессору. В направлении IP-TDM цифровые пакеты передаются на субмодуль VoIP, декодируются и через внутрисистемную магистраль передаются в поток Е1.

Внешние 2-мегабитные потоки Е1 через согласующие трансформаторы поступают на фреймеры, при этом из потока выделяется сигнал синхронизации и выдается на общую линию синхронизации устройства. Управление приоритетностью линий синхронизации происходит на программном уровне согласно заданному алгоритму.

Структура программного обеспечения устройства приведена на рисунке 6.
1.4 Основные технические параметры

Основные технические параметры терминала приведены в следующих таблицах:

Таблица 1.1 – Основные технические параметры

Протоколы VoIP

<table>
<thead>
<tr>
<th>Поддерживаемые протоколы</th>
<th>SIP-T/SIP-I</th>
<th>SIP</th>
<th>T.38</th>
</tr>
</thead>
</table>

Аудиокодеки

<table>
<thead>
<tr>
<th>Кодеки</th>
<th>G.711 (A/U)</th>
<th>G.729 AB</th>
<th>G.723.1 (6.3 Kbps, 5.3 Kbps)</th>
<th>G.726 (32 Kbps)</th>
<th>CLEARMODE (RFC4040)</th>
</tr>
</thead>
</table>

Количество VoIP каналов, поддерживаемых субмодулем, в зависимости от типа кодека

<table>
<thead>
<tr>
<th>Кодек/ время пакетизации, мс</th>
<th>Количество каналов</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMG-2/SMG-4 с субмодулем SM-VP-M300</td>
<td>SMG-2 с субмодулем SM-VP-M200</td>
</tr>
<tr>
<td>G.711 (A/U) / 20-60</td>
<td>128</td>
</tr>
<tr>
<td>G.711 (A/U) / 10</td>
<td>112</td>
</tr>
<tr>
<td>G.729 A / 20-80</td>
<td>72</td>
</tr>
<tr>
<td>G.729 A / 10</td>
<td>62</td>
</tr>
<tr>
<td>G.723.1 (6.3 Kbps, 5.3 Kbps)</td>
<td>58</td>
</tr>
<tr>
<td>G.726 / 20</td>
<td>98</td>
</tr>
<tr>
<td>G.726 / 10</td>
<td>88</td>
</tr>
<tr>
<td>T.38</td>
<td>54</td>
</tr>
</tbody>
</table>

Параметры электрического интерфейса Ethernet

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество интерфейсов</td>
<td>1</td>
</tr>
<tr>
<td>Электрический разъем</td>
<td>RJ-45</td>
</tr>
<tr>
<td>Скорость передачи, Мбит/с</td>
<td>Автоопределение, 10/100/1000Мбит/с, дуплекс</td>
</tr>
<tr>
<td>Поддержка стандартов</td>
<td>10/100/1000BaseT</td>
</tr>
</tbody>
</table>

Параметры консоли

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Последовательный порт</td>
<td>RS-232</td>
</tr>
<tr>
<td>Скорость передачи данных, бит/сек</td>
<td>115200</td>
</tr>
<tr>
<td>Электрические параметры сигналов</td>
<td>По рекомендации МСЭ-T V.28</td>
</tr>
</tbody>
</table>

Параметры интерфейса E1

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество интерфейсов</td>
<td>SMG-4</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Электрический разъем</td>
<td>RJ-48</td>
</tr>
<tr>
<td>Число каналов</td>
<td>согласно рекомендациям ITU-T G.703,G.704</td>
</tr>
<tr>
<td>Скорость передачи данных в линии</td>
<td>2,048 Мбит/сек</td>
</tr>
<tr>
<td>Линейный код</td>
<td>HDB3, AMI</td>
</tr>
<tr>
<td>Выходной сигнал в линию</td>
<td>3,0 В амплитудное на нагрузке 120 Ом</td>
</tr>
<tr>
<td></td>
<td>2,37 В амплитудное на нагрузке 75 Ом (по рекомендации МККТТ G.703)</td>
</tr>
<tr>
<td>Входной сигнал из линии</td>
<td>от 0 до минус 6 дБ по отношению к стандартному выходному импульсу</td>
</tr>
<tr>
<td>Эластичный буфер</td>
<td>емкость 2 кадра</td>
</tr>
<tr>
<td>Протокол сигнализации</td>
<td>ISDN PRI (Q.931), QSIG и CorNet для передачи имени абонента, OKC-7</td>
</tr>
</tbody>
</table>

* По умолчанию на устройстве SMG-2 доступен только 1 поток E1, для активации второго потока необходимо установить специальную лицензию, подробнее о лицензиях в разделе 4.1.19 Обновление лицензии
Общие параметры

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рабочий диапазон температур</td>
<td>от +5 до +40°C</td>
</tr>
<tr>
<td>Относительная влажность</td>
<td>до 80%</td>
</tr>
<tr>
<td>Напряжение питания</td>
<td>адаптер питания 12V DC, 2A</td>
</tr>
<tr>
<td>Потребляемая мощность</td>
<td>не более 10 Вт</td>
</tr>
<tr>
<td>Габариты (ширина, высота, глубина)</td>
<td>187x124x32</td>
</tr>
<tr>
<td>Вес нетто</td>
<td>0,3 кг</td>
</tr>
<tr>
<td>Вес в упаковке</td>
<td>0,5 кг</td>
</tr>
</tbody>
</table>

1.5 Конструктивное исполнение

Транковый шлюз SMG выполнен в пластиковом корпусе размерами 187x124x32 мм.

Внешний вид панелей устройств приведен на рисунках 7, 8а, 8б.

Рисунок 7 – Внешний вид SMG. Верхняя и боковая панель

Рисунок 8а – Внешний вид SMG-4. Задняя панель
На корпусе устройства расположены следующие разъемы, световые индикаторы и органы управления, таблица 1.2.

Таблица 1.2 – Описание разъемов, индикаторов и органов управления передней панели

<table>
<thead>
<tr>
<th>№</th>
<th>Элемент панели</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Верхняя панель. Индикаторы работы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Power</td>
<td>Индикатор наличия питания устройства</td>
</tr>
<tr>
<td>2</td>
<td>LAN</td>
<td>Индикатор сетевой активности</td>
</tr>
<tr>
<td>3</td>
<td>USB</td>
<td>Индикатор работы USB порта</td>
</tr>
<tr>
<td>4</td>
<td>Alarm</td>
<td>Индикатор критической аварии устройства</td>
</tr>
<tr>
<td>5</td>
<td>Status</td>
<td>Индикатор работы устройства</td>
</tr>
<tr>
<td>6</td>
<td>Sync</td>
<td>Индикатор наличия синхронизации</td>
</tr>
<tr>
<td>7</td>
<td>E1 0..3</td>
<td>Индикаторы работы потоков Е1, для устройства SMG-2 светодиоды E1 2 и E1 3 неактивны</td>
</tr>
<tr>
<td>Боковая панель. Функциональная кнопка</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>Функциональная кнопка</td>
</tr>
<tr>
<td>Задняя панель. Разъемы и органы управления</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ON/OFF</td>
<td>Кнопка включения/выключения</td>
</tr>
<tr>
<td>10</td>
<td>12V</td>
<td>Разъем для подключения к сети питания (через адаптер, входящий в комплект поставки)</td>
</tr>
<tr>
<td>11</td>
<td>LAN 10/100/1000</td>
<td>1 разъем RJ-45 интерфейса Ethernet 10/100/1000 Base-T</td>
</tr>
<tr>
<td>12</td>
<td>USB</td>
<td>USB-порт для подключения внешнего накопителя</td>
</tr>
<tr>
<td>13</td>
<td>Console</td>
<td>Консольный порт RJ-45 для локального управления устройством (распайка разъемов приведена в Приложении A)</td>
</tr>
<tr>
<td>14</td>
<td>E1 0..3 (для SMG-4)</td>
<td>4 разъема RJ-48 для подключения потоков Е1 (распайка разъемов приведена в Приложении A)</td>
</tr>
<tr>
<td></td>
<td>E1 0..1 (для SMG-2)</td>
<td>2 разъема RJ-48 для подключения потоков Е1 1 (распайка разъемов приведена в Приложении A)</td>
</tr>
</tbody>
</table>

1.6 Световая индикация

Текущее состояние устройства отображается при помощи индикаторов Power, LAN, USB, Alarm, Status, Sync, E1 – расположенных на верхней крыше устройства. Перечень состояний индикаторов приведен в таблицах 1.3, 1.4.

1 По умолчанию на устройстве SMG-2 доступен только 1 поток Е1, для активации второго потока необходимо установить специальную лицензию, подробнее о лицензиях в разделе 4.1.19 Обновление лицензии
Таблица 1.3 – Световая индикация состояния устройства в рабочем состоянии

<table>
<thead>
<tr>
<th>Индикатор</th>
<th>Состояние индикатора</th>
<th>Состояние устройства</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>не горит</td>
<td>нет питания устройства от адаптера 12 Вольт</td>
</tr>
<tr>
<td></td>
<td>горит зеленым светом</td>
<td>на устройство подано питание 12 Вольт</td>
</tr>
<tr>
<td>LAN</td>
<td>не горит</td>
<td>отсутствует линк</td>
</tr>
<tr>
<td></td>
<td>горит/мигает зеленым светом</td>
<td>Порт работает в режиме 10/100Base-TX</td>
</tr>
<tr>
<td></td>
<td>горит/мигает желтым светом</td>
<td>Порт работает в режиме 1000Base-T</td>
</tr>
<tr>
<td>USB</td>
<td>не горит</td>
<td>не подключено устройство USB</td>
</tr>
<tr>
<td></td>
<td>горит зеленым светом</td>
<td>подключено высокоскоростное устройство USB</td>
</tr>
<tr>
<td></td>
<td>горит красным светом</td>
<td>подключено низкоскоростное устройство USB</td>
</tr>
<tr>
<td>Alarm</td>
<td>мигает красным светом</td>
<td>критическая авария на устройстве</td>
</tr>
<tr>
<td></td>
<td>горит красным светом</td>
<td>не критическая авария на устройстве</td>
</tr>
<tr>
<td></td>
<td>горит желтым светом</td>
<td>нет аварий, есть некритические замечания</td>
</tr>
<tr>
<td></td>
<td>горит зеленым светом</td>
<td>нормальная работа</td>
</tr>
<tr>
<td>Status</td>
<td>горит зеленым светом</td>
<td>нормальная работа</td>
</tr>
<tr>
<td></td>
<td>не горит</td>
<td>нет питания устройства</td>
</tr>
<tr>
<td>Sync</td>
<td>не горит</td>
<td>источники синхронизации не заданы</td>
</tr>
<tr>
<td></td>
<td>горит зеленым светом</td>
<td>присутствует синхронизация от источника</td>
</tr>
<tr>
<td></td>
<td>горит красным светом</td>
<td>отсутствует синхронизация от источника</td>
</tr>
</tbody>
</table>

Таблица 1.4 – Световая индикация при загрузке и сбросе к заводским настройкам

<table>
<thead>
<tr>
<th>№</th>
<th>Индикация</th>
<th>Порядок сброса к настройкам по умолчанию (устройство включено)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>желтый</td>
<td>Нажать и удерживать кнопку F в течение 1 секунды до появления данной комбинации, затем отпустить кнопку. Через 3 секунды начнется перезагрузка устройства.</td>
</tr>
<tr>
<td>2</td>
<td>не горит</td>
<td>На данном этапе на устройство подано питание, операционная система не загружена.</td>
</tr>
<tr>
<td>3</td>
<td>не горит</td>
<td>На данном этапе происходит загрузка операционной системы шлюза. Для изменения сетевых параметров и возврата конфигурации устройства к заводским настройкам после появления комбинации нажать и удерживать кнопку F в течение 40-45 сек.</td>
</tr>
</tbody>
</table>
| 4 | не горит | При появлении комбинации отпустить кнопку F. Через некоторое время в консоль будет выведено сообщение:

`<<<BOOTING IN SAFE-MODE.RESTORING DEFAULT PARAMETERS>>>`

Переход в режим сброса к заводским настройкам завершен.

Возможен сброс к заводским настройкам на включаемом устройстве.

В этом случае пункт 1 необходимо пропустить.

Состояние интерфейсов Ethernet также отображается светодиодными индикаторами, встроенными в разъем 1000/100.
Таблица 1.5 – Световая индикация интерфейсов Ethernet 1000/100

<table>
<thead>
<tr>
<th>Состояние устройства</th>
<th>Индикатор/Состояние</th>
<th>Желтый индикатор 1000/100</th>
<th>Зеленый индикатор 1000/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Порт работает в режиме 1000Base-T, нет передачи данных</td>
<td>горит постоянно</td>
<td>горит постоянно</td>
<td></td>
</tr>
<tr>
<td>Порт работает в режиме 1000Base-T, есть передача данных</td>
<td>горит постоянно</td>
<td>мигает</td>
<td></td>
</tr>
<tr>
<td>Порт работает в режиме 10/100Base-T, нет передачи данных</td>
<td>не горит</td>
<td>горит постоянно</td>
<td></td>
</tr>
<tr>
<td>Порт работает в режиме 10/100Base-T, есть передача данных</td>
<td>не горит</td>
<td>мигает</td>
<td></td>
</tr>
</tbody>
</table>

В таблице 1.6 приведена индикация потоков E1.

Таблица 1.6 – Индикация E1

<table>
<thead>
<tr>
<th>Состояние потока</th>
<th>Индикатор E1</th>
<th>Красный</th>
<th>Желтый</th>
<th>Зеленый</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1 отключен в конфигурации шлюза</td>
<td>не горит</td>
<td>не горит</td>
<td>не горит</td>
<td></td>
</tr>
<tr>
<td>Аварийное состояние потока E1</td>
<td>мигает (200 мс)</td>
<td>не горит</td>
<td>не горит</td>
<td></td>
</tr>
<tr>
<td>Потеря сигнала (LoS)</td>
<td>горит</td>
<td>не горит</td>
<td>не горит</td>
<td></td>
</tr>
<tr>
<td>Авария AIS</td>
<td>мигает (200 мс)</td>
<td>мигает (200 мс)</td>
<td>не горит</td>
<td></td>
</tr>
<tr>
<td>Авария LOF</td>
<td>мигает (200 мс)</td>
<td>не горит</td>
<td>не горит</td>
<td></td>
</tr>
<tr>
<td>Авария LOMF</td>
<td>мигает (200 мс)</td>
<td>не горит</td>
<td>не горит</td>
<td></td>
</tr>
<tr>
<td>Нормальная работа потока E1</td>
<td>не горит</td>
<td>не горит</td>
<td>горит</td>
<td></td>
</tr>
<tr>
<td>Авария на удаленном конце (RAI)</td>
<td>не горит</td>
<td>горит</td>
<td>не горит</td>
<td></td>
</tr>
<tr>
<td>Поток E1 в работе, присутствуют проскальзывания на потоке (SLIP)</td>
<td>не горит</td>
<td>мигает (500 мс)</td>
<td>мигает (500 мс)</td>
<td></td>
</tr>
<tr>
<td>Идет тестирование потока E1</td>
<td>мигает (200 мс)</td>
<td>не горит</td>
<td>мигает (200 мс)</td>
<td></td>
</tr>
</tbody>
</table>

В таблице 1.7 приведено подробное описание аварий, отображаемых в состоянии индикатора Alarm.

Индикация сохранения CDR-файлов

В случае если FTP сервер недоступен, CDR-записи сохраняются в оперативной памяти устройства, на хранение CDR файлов выделено 30 MB. При заполнении памяти в определенных границах будет индицироваться авария.

Таблица 1.7 – Индикация аварий

<table>
<thead>
<tr>
<th>Состояние индикатора Alarm</th>
<th>Уровень аварии</th>
<th>Описание аварии</th>
</tr>
</thead>
<tbody>
<tr>
<td>мигает красным светом</td>
<td>критическая (critical)</td>
<td>ошибка конфигурации</td>
</tr>
<tr>
<td></td>
<td></td>
<td>потеря связи с SIP-модулем</td>
</tr>
<tr>
<td></td>
<td></td>
<td>авария группы линий ОКС-7 при установленном флаге Индикация в меню «Маршрутизация/Группы линий ОКС»</td>
</tr>
<tr>
<td></td>
<td></td>
<td>авария потока E1 (при установленном флаге Индикация Alarm в меню «Потоки E1/Физические параметры»)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FTP-сервер недоступен, оперативная память для хранения CDR-файлов заполнена свыше 50% (15 – 30 MB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>температура процессора достигла значения в 100 °C</td>
</tr>
</tbody>
</table>
Цифровой шлюз SMG

1.7 Использование функциональной кнопки F

Функциональная кнопка F используется для перезагрузки устройства, восстановления заводской конфигурации, а также для восстановления пароля.

Порядок сброса к настройкам по умолчанию на включенном устройстве приведен в Таблице 3.2.
После восстановления заводской конфигурации к устройству можно будет обратиться по IP-адресу 192.168.1.2 (маска 255.255.255.0):

– через telnet либо console: логин admin, пароль rootpasswd;
– через web-интерфейс: логин admin, пароль rootpasswd;

Далее можно сохранить заводскую конфигурацию, восстановить пароль или перезагрузить устройство.
Сохранение заводской конфигурации

Для сохранения заводской конфигурации: подключитесь через telnet либо console, используя логин admin, пароль rootpasswd, введите команду sh (устройство выйдет из режима CLI в режим SHELL), введите команду save, перезагрузите устройство командой reboot. Шлюз загрузится с заводской конфигурацией.

Восстановление пароля

Для восстановления пароля: подключитесь через Telnet, SSH либо Console, введите команду sh (устройство выйдет из режима cli в режим shell), введите команду restore (восстановится текущая конфигурация), введите команду passwd (устройство потребует ввести новый пароль и его подтверждение), введите команду save, перезагрузите устройство командой reboot. Шлюз загрузится с текущей конфигурацией и новым паролем.

В случае перезагрузки, без выполнения каких либо действий, на устройстве восстановится текущая конфигурация без восстановления пароля. Шлюз загрузится с текущей конфигурацией и старым паролем.
1.8 Комплект поставки

В базовый комплект поставки устройства SMG входят:

– транковый шлюз SMG-2 или SMG-4;
– адаптер электропитания;
– руководство по эксплуатации и пакет документов.

1.9 Инструкции по технике безопасности

1.9.1 Общие указания

При работе с оборудованием необходимо соблюдение требований «Правил техники безопасности при эксплуатации электроустановок потребителей».

Запрещается работать с оборудованием лицам, не допущенным к работе в соответствии с требованиями техники безопасности в установленном порядке.

• Эксплуатация устройства должна производиться инженерно-техническим персоналом, прошедшим специальную подготовку.
• Подключать к устройству только годное к применению вспомогательное оборудование.
• Транковый шлюз SMG предназначен для круглосуточной эксплуатации при следующих условиях:
 • температура окружающей среды от 0 до +40°C;
 • относительная влажность воздуха до 80% при температуре 25°C;
 • атмосферное давление от 6,0х10*4 до 10,7х10*4 Па (от 450 до 800 мм рт.ст.).
• Не подвергать устройство воздействию механических ударов и колебаний, а так же дыма, пыли, воды, химических реагентов.
• Во избежание перегрева компонентов устройства и нарушения его работы запрещается закрывать вентиляционные отверстия посторонними предметами и размещать предметы на поверхности оборудования.

1.9.2 Требования электробезопасности

• Перед включением устройства убедиться в целостности кабелей и их надежном креплении к разъемам.
• При разборке и сборке устройства необходимо убедиться, что электропитание отключено.
2 УСТАНОВКА SMG

Перед установкой и включением устройства необходимо проверить его на наличие видимых механических повреждений. В случае наличия повреждений следует прекратить установку устройства, составить соответствующий акт и обратиться к поставщику.

Если устройство находилось длительное время при низкой температуре, перед началом работы следует выдержать его в течение двух часов при комнатной температуре. После длительного пребывания устройства в условиях повышенной влажности перед включением выдержать в нормальных условиях не менее 12 часов.

2.1.1 Порядок включения

1. Подключить поточные (E1) и Ethernet кабели к соответствующим разъемам шлюза.
2. Подключить к устройству адаптер питания.
3. Включить питание устройства и убедиться в отсутствии аварий по состоянию индикаторов на передней панели.

2.1.2 Вскрытие корпуса

Предварительно надлежит отключить питание SMG и отсоединить все кабели.

Рисунок 9 – Вскрытие корпуса

1. С помощью отвертки отсоединить 4 винта крепления на нижней панели устройства, как показано на рисунке.
2. Снять верхнюю панель (крышку) устройства, потянув ее наверх.

При сборе устройства в корпус выполнить вышеперечисленные действия в обратном порядке.
2.1.3 Замена батарейки часов реального времени

В RTC (электронной схеме, предназначенной для автономного учёта хронометрических данных (текущее время, дата, день недели и др.)) на плате устройства установлен элемент питания (батарейка), имеющий следующие характеристики:

<table>
<thead>
<tr>
<th>Тип батареи</th>
<th>литиевая</th>
</tr>
</thead>
<tbody>
<tr>
<td>Типоразмер</td>
<td>CR2032 (возможна установка CR2024)</td>
</tr>
<tr>
<td>Напряжение</td>
<td>3 В</td>
</tr>
<tr>
<td>Емкость</td>
<td>225 мА</td>
</tr>
<tr>
<td>Диаметр</td>
<td>20 мм</td>
</tr>
<tr>
<td>Толщина</td>
<td>3,2 мм</td>
</tr>
<tr>
<td>Срок службы или срок годности</td>
<td>5 лет</td>
</tr>
<tr>
<td>Условия хранения</td>
<td>от -20 до +35 °C</td>
</tr>
</tbody>
</table>

Рисунок 10 – Положение батареи RTC

Если срок работы батарейки истек, для корректной и бесперебойной работы оборудования необходимо заменить ее на новую, выполнив следующие действия:

1. Проверить наличие питания сети на устройстве.
2. В случае наличия напряжения – отключить питание.
3. Вскрыть корпус устройства (см. п. 2.1.2 Вскрытие корпуса).
4. Извлечь отработавшую батарейку с обратной стороны платы (Рисунок 10) и в аналогичной позиции установить новую.

При сборе устройства в корпус выполнить вышеперечисленные действия в обратном порядке.

При отключенчной синхронизации NTP после замены батарейки RTC необходимо заново установить системную дату и время на устройстве.

Использованные батарейки подлежат специальной утилизации.
3 ОБЩИЕ РЕКОМЕНДАЦИИ ПРИ РАБОТЕ СО ШЛЮЗОМ

Самым простым способом конфигурирования и мониторинга устройства является web-интерфейс, поэтому для этих целей рекомендуется использовать его.

Во избежание несанкционированного доступа к устройству рекомендуем сменить пароль на доступ через telnet и консоль (по умолчанию пользователь admin, пароль rootpasswd), а также сменить пароль для администратора на доступ через web-интерфейс. Установка пароля для доступа через telnet и консоль описана в разделе 4.3.2 Смена пароля для доступа к устройству через CLI. Установка пароля для доступа через web-интерфейс описана в разделе 4.1.21. Рекомендуется записать и сохранить установленные пароли в надежном месте, недоступном для злоумышленников.

Во избежание потери данных настройки устройства, например, после сброса к заводским установкам, рекомендуем сохранять резервную копию конфигурации на компьютере каждый раз после внесения в нее существенных изменений.
4 КОНФИГУРИРОВАНИЕ УСТРОЙСТВА

Все настройки применяются без перезагрузки шлюза. Для сохранения измененной конфигурации в энергонезависимую память используйте меню «Сервис/Сохранить конфигурацию во Flash» в WEB-конфигураторе, либо команду COPY RUNNING_TO_STARTUP в CLI.

4.1 Настройка SMG через web-интерфейс

Для того чтобы произвести конфигурирование устройства, необходимо подключиться к нему через web-браузер (программу-просмотрщик гипертекстовых документов), например: Firefox, Google Chrome. Ввести в строке браузера IP-адрес устройства:

Заводской IP-адрес устройства SMG 192.168.1.2 маска сети 255.255.255.0

После ввода IP-адреса устройство запросит имя пользователя и пароль. Также здесь можно выбрать язык, который будет использоваться в интерфейсе.

При первом запуске имя пользователя: admin, пароль: rootpasswd.

После получения доступа к web-конфигуратору откроется меню Информация о системе.
На рисунке ниже представлены элементы навигации WEB-конфигуратора.

Окно пользовательского интерфейса разделено на несколько областей:

- **Дерево навигации** — служит для управления полем настроек. В дереве навигации иерархически отображены разделы управления и меню, находящиеся в них.

- **Поле настроек** — базируется на выборе пользователя. Предназначено для просмотра настроек устройства и ввода конфигурационных данных.

- **Панель управления** — панель для управления полем настроек и состоянием ПО устройства.

- **Меню управления** — выпадающие меню панели управления полем настроек и состоянием ПО устройства.

- **Сигнализация аварий** — служит для отображения текущей приоритетной аварии, также является ссылкой для работы с журналом аварийных событий.
Авторизация — ссылка для работы с паролями доступа к устройству через web-интерфейс.

Переключатель языков — кнопки для переключения языка интерфейса.

Иконки управления — элементы управления для работы с объектами поля настроек, дублируют меню «Объекты» на панели управления:

- Добавить объект;
- Редактировать объект;
- Удалить объект;
- Посмотреть объект.

Кнопки управления — элементы управления для работы с полем настроек.

Во избежание несанкционированного доступа при дальнейшей работе с устройством рекомендуется изменить пароль (раздел 4.1.21).

Кнопка («Подсказка») рядом с элементом редактирования позволяет получить пояснения по данному параметру.
4.1.1 Системные параметры

Системные параметры

Имя устройства (только для web-страницы) – наименование устройства, данное имя используется в заголовке web-конфигuratorа устройства;

Количество активных планов нумерации – количество одновременно активных планов нумерации, всего можно настроить до 16-ти независимых планов нумерации с возможностью добавления абонентов в каждый план и построения своей таблицы маршрутизации вызовов.

Индикация аварий

– Загруженность процессора – при установленном флаге в систему управления будет выдаваться авария о высокой загрузке процессора;
– Использование оперативной памяти – при установленном флаге в систему управления будет выдаваться авария о заканчивающейся свободной оперативной памяти;
– Заполнение внешних накопителей – при установленном флаге в систему управления будет выдаваться авария о заканчивающейся свободной памяти на внешнем накопителе;

Автоматическое конфигурирование

– Включить автообновление – включение опции автоматического обновления ПО и конфигурации;
– Источник – метод получения параметров для процедуры автообновления:
 – Static – использовать параметры автоматического обновления, настроенные в конфигурации;
 – DHCP – выбор сетевого интерфейса с настроенным протоколом DHCP, через который будут получены Опции 66 и 67 для автоматического обновления;
– Протокол – протокол, по которому будет производиться автообновление (TFTP/FTP/HTTP/HTTPS);
– Аутентификация – при установленном флаге использовать аутентификацию в процессе процедуры автообновления по выбранному протоколу (FTP/HTTP/HTTPS);
– Имя – логин для доступа к серверу автообновления;
– Пароль – пароль для доступа к серверу автообновления;
– Обновлять конфигурацию – использовать процедуру автоматического обновления конфигурации;
– Имя файла конфигурации – имя файла конфигурации, расположенного на сервере автообновления, и путь к нему, по умолчанию используется файл MAC.cfg, где MAC – это MAC-адрес устройства в формате xx.xx.xx.xx.xx.xx;
– Период обновления конфигурации, м – период запросов файла конфигурации на сервере автообновления, в минутах;
– Обновлять ПО – использовать процедуру автоматического обновления ПО;
– Имя файла версий ПО – имя файла манифеста с описанием версии ПО, пути до файла ПО и времени обновления ПО, расположенного на сервере автообновления;
– Период обновления ПО, м – период запросов файла манифеста на сервере автообновления, в минутах.

Выгрузка конфигураций

SMG может автоматически выгружать конфигурацию на внешний FTP-/TFTP-сервер при каждом ее сохранении в энергонезависимую память.

– Включить автозагрузку – при установленном флаге функция выгрузки конфигурации на внешний FTP-/TFTP-сервер включена.
– Протокол – выбор протокола, по которому будет производиться выгрузка. Поддерживается FTP или TFTP.
– Порт – порт сервера, через который будет производиться выгрузка.
– Путь к файлу – директория на сервере, в которую будет сохраняться конфигурация.
– Имя – имя для аутентификации при использовании протокола FTP.
– Пароль – пароль для аутентификации при использовании протокола FTP.

4.1.1.1 Формат опций 66 и 67

Опция 66 необходима для получения IP-адреса или доменного имени сервера автообновления.

Синтаксис:

“<IP-адрес или доменное имя сервера обновления>“
Пример:
“update.local”

или

“192.168.1.3”

Опция 67 необходимо для получения пути до файла описания версии ПО (файл manifest) и файла конфигурации.

Синтаксис:

“<Путь к файлу smg4.manifest(либо smg2.manifest)>;<Путь и имя файла конфигурации>”

Пример:

“/smg4/firmware/smg4.manifest;/smg4/conf/<MAC>.cfg”

“/smg2/firmware/smg2.manifest;/smg2/conf/<MAC>.cfg”

После получения от сервера имени файла конфигурации в виде "<MAC>.cfg" при обращении на сервер с файлом конфигурации устройство автоматически заменит <MAC> на собственный MAC-адрес в формате 11.22.33.44.55.66, то есть на сервере должен находиться файл конфигурации с названием 11.22.33.44.55.66.cfg.

Если от DHCP-сервера не будут получены опции 66 или 67, будут использованы значения этих опций по умолчанию.

Для Опции 66: "update.local".

Для Опции 67: "smg4.manifest;<MAC>.cfg";

"smg2.manifest;<MAC>.cfg".

4.1.1.2 Формат файла smg4.manifest (smg2.manifest)

Файл smg4.manifest (smg2.manifest) является текстовым файлом, в котором описывается номер версии и путь до файла ПО, который находится на сервере автообновления, а также период времени для выполнения перезагрузки устройства после обновления ПО на более новую версию.

В общем виде формат содержимого файла:

<версия ПО>;<путь до файла ПО>; <период времени (в часах)>

Параметры <версия ПО> и <путь до файла ПО> являются обязательными. <Период времени> – необязательный параметр, если период времени не указан, устройство будет перезагружено в ближайшее время, когда не будет активных разговорных сессий.

Пример файла с периодом:

3.1.1.1076;smg4/smg4_firmware_3.1.1.1076.bin;18-21

Пример файла без периода:

3.1.1.1076;smg4/smg4_firmware_3.1.1.1076.bin
4.1.1.3 Алгоритм автоматической загрузки конфигурации и проверки актуальности файла конфигурации

Данная процедура необходима для автоматической загрузки с сервера нового файла конфигурации для устройства. В файле конфигурации хранится дата и время его создания:

```
SMG-config:
  Version: 13
  LastUpdate:
    ID: 1
    Date: 2015-03-30
    Time: 05:59:28
```

При загрузке SMG проверяет наличие файла конфигурации на FTP/TFTP/HTTP/HTTPS–сервере (при необходимости – авторизуется на сервере) по заданному пути, если файл конфигурации присутствует, то шлюз загружает его, после чего сравниваются дата и время создания текущего и загруженного файлов конфигурации (Date и Time), и если в загруженном файле указаны более поздние дата и время, чем в текущем, устройство сохраняет и применяет новую конфигурацию, иначе – активной остается текущая конфигурация.

Таким образом, если оператору требуется внести изменения в конфигурацию шлюза, достаточно загрузить на сервер новый файл конфигурации с необходимыми изменениями и новым значением даты и времени, при этом конфигурация обновится автоматически по истечении интервала «Период обновления конфигурации, м».
4.1.1.4 Алгоритм работы функции автоматического обновления и проверки актуальности ПО

При загрузке SMG, а также по истечении таймера «Период обновления ПО» происходит проверка наличия файла описания версий (smg4.manifest/smg2.manifest) на сервере автообновления по заданному пути. Если файл присутствует, то SMG загружает его. В данном файле содержатся сведения о версиях файлов ПО, которые присутствуют на сервере, пути к ним и их имена, также может присутствовать период времени для перезапуска устройства после обновления. Если версии ПО на сервере отличаются от текущих (работающих на шлюзе), происходит проверка на наличие активных разговорных сессий. Если таких нет, устройство загружает образ ПО, указанный в файле smg4.manifest/smg2.manifest, и происходит обновление встроенного ПО шлюза. После обновления ПО проверяется наличие активных голосовых сессий, если таких нет, происходит перезапуск шлюза, иначе – включается таймер 30 секунд. По истечении таймера вновь проверяется наличие активных разговорных сессий. В случае если в файле manifest присутствовал период времени для перезагрузки, включается таймер, выждается время начала этого периода. К примеру, в файле было указано 18-21, устройство дожидается 18:00 и проверяют наличие активных голосовых сессий, если таких нет, то происходит перезапуск шлюза, иначе – включается таймер 30 секунд, по истечении которого вновь проверяется наличие активных разговорных сессий.
4.1.2 Мониторинг

4.1.2.1 Телеметрия

В данном разделе отображается информация о датчиках температуры и загрузке процессора.

Temperatura

- Датчик #0 – температура процессора;
- Датчик #1 – температура коммутатора.

Текущая загрузка процессора:

- **USR** – процент использования процессорного времени пользователями программами;
- **SYS** – процент использования процессорного времени процессами ядра;
- **NIC** – процент использования процессорного времени программами с измененным приоритетом;
- **IDLE** – процент незадействованных процессорных ресурсов;
- **IO** – процент процессорного времени, потраченного на операции ввода/вывода;
- **IRQ** – процент процессорного времени, потраченного на обработку аппаратных прерываний;
- **SIRQ** – процент процессорного времени, потраченного на обработку программных прерываний.

4.1.2.2 Мониторинг потоков Е1

В разделе информационной обустроенной печати на субмодуле М4Е1, а также мониторинг и статистика потоков Е1.

- Информация о субмодуле М4Е1 – информация об имени чипа и его идентификаторе.

Параметры потоков:
- **Состояние** – статус потока:

1 По умолчанию на устройстве SMG-2 доступен только 1 поток Е1, для активации второго потока необходимо установить специальную лицензию, подробнее о лицензиях в разделе 4.1.19 Обновление лицензии
Цифровой шлюз SMG

- **WORK** – поток в работе;
- **LOS** – потеря сигнала;
- **OFF** – поток выключен в конфигурации;
- **NONE** – не установлен субмодуль;
- **AIS** – сигнал индикации аварийного состояния (сигнал, содержащий все единицы);
- **LOMF** – сигнал индикации аварийного состояния сверхцикла;
- **RAI** – индикация удаленной аварии;
- **Состояние D канала** – статус D-канала, служебного канала управления;
- **up** – D-канал в работе;
- **down** – D-канал не в работе;
- **no** – на потоке отсутствует канал управления;
- **off** – на потоке выключена сигнализация;

- **Время сбора статистики (сек)** – период времени сбора статистики, в секундах;
- **Положительных слипов** – число положительных проскальзываний на потоке;
- **Отрицательных слипов** – число отрицательных проскальзываний на потоке;
- **Приято байт** – количество принятых байт из потока;
- **Передано байт** – количество переданных байт по потоку;
- **Коротких пакетов** – число принятых пакетов меньше стандартного размера;
- **Больших пакетов** – число принятых пакетов, превышающих стандартный размер;
- **Переполнений** – счетчик ошибок переполнения буфера;
- **Ошибка CRC** – счетчик ошибок CRC;
- **Сбоев передачи** – счетчик сбоев при передаче по потоку;
- **Code violations counter** – счетчик сбоев кодовой последовательности сигнала;
- **CRC Error Counter / PRBS** – количество ошибок CRC (в режиме «PRBS test»);
- **Bit error rate** – количество битовых ошибок по потоку;
- **Выделить** – при установке флага для выбранного потока при нажатии на кнопку «Сбросить счетчики» накопленная статистика будет обнулена;
- **Удаленный заворот** – режим тестирования тракта E1, при котором сигнал, принятый комплектом из подключенного потока E1, будет направлен непосредственно на передачу в этот же поток;
- **PRBS test** – включает псевдослучайную последовательность на выходной порт комплекта (передает в подключенный поток E1), при этом на входном порту комплекта (прием потока E1) включается режим детектирования ошибок этой последовательности для оценки качества передачи сигнала. Количество ошибок и счетчик времени анализа можно просмотреть в окне информации о потоке;
- **PRBS тест и локальный заворот** – режим тестирования тракта E1, при котором внешняя линия отключается, и передаваемый комплектом сигнал будет направлен непосредственно на прием этого же комплекта. На выходной порт комплекта будет включена псевдослучайная последовательность, входной порт будет работать в режиме детектирования ошибок;
- **Отключить тест** – отключение режима тестирования.
4.1.2.3 Мониторинг каналов Е1

В разделе отображается информация о состоянии каналов потоков Е1.

Состояние потоков

- **Состояние** — статус потока:
 - **NONE** — субмодуль M4E1 отсутствует;
 - **OFF** — поток выключен в конфигурации;
 - **ALARM** — ошибка инициализации субмодуля M4E1;
 - **LOS** — потеря сигнала;
 - **AIS** — сигнал индикации аварийного состояния (сигнал, содержащий все единицы);
 - **LOMF** — сигнал индикации аварийного состояния сверхцикла;
 - **WORK/RAI** — индикация удаленной аварии;
 - **WORK/SLIP** — индикация проскальзываний (SLIP) на потоке
 - **WORK** — поток в работе;
 - **TEST** — индикация тестирования потока (PRBS test, заворот локальный и удаленный).

Состояние каналов

- **Состояние** — статус канала:
 - **Off** — канал выключен в конфигурации;
 - **Idle** — канал в исходном состоянии;
 - **Block** — канал заблокирован;
 - **Incoming dialing** — входящий набор номера;
 - **Outgoing dialing** — исходящий набор номера;
 - **Incoming alerting** — входящее занятие, вызываемый абонент свободен;
 - **Outgoing alerting** — исходящее занятие, вызываемый абонент свободен;
 - **Busy, Release** — освобождение канала, выдача сигнала «занято»;
 - **Talk, Hold** — канал в разговорном состоянии, на удержании;
 - **Waiting** — ожидание ответных действий встречной стороны (ожидание подтверждения занятия, ожидание АОН, ожидание набора номера).

Информация о соединении в потоке по каналу

- **Порт/канал** — раздел состоит из двух частей:
 - протокол сигнализации (PRI/SS7);
 - координаты порта: № потока: № канала;

1 По умолчанию на устройстве SMG-2 доступен только 1 поток Е1, для активации второго потока необходимо установить специальную лицензию, подробнее о лицензиях в разделе 4.1.19 Обновление лицензии.
— Связанный порт/канал — раздел состоит из двух частей:
 — протокол сигнализации связанного порта (PRI/SS7/VoIP);
 — координаты связанного порта: № потока: № канала для PRI/SS7 либо № субмодуля VoIP: № канала для VoIP;
— Связанный Callref — идентификатор вызова по связанному каналу;
— Состояние — состояние канала:
 — Off — канал выключен;
 — Block — канал заблокирован;
 — Init — инициализация канала;
 — Idle — канал в исходном состоянии;
 — In-Dial / Out-Dial — входящий/исходящий набор номера;
 — In-Call / Out-Call — входящее/исходящее занятие;
 — In-Busy / Out-Busy — выдача сигнала занято;
 — Talk — канал в разговорном состоянии;
 — Release — освобождение канала;
 — Wait-Ack — ожидание подтверждения;
 — Wait-CID — ожидание CgPN (AOH);
 — Wait-Num — ожидание набора номера
 — Hold — абонент был поставлен на удержание;
— Таймер состояния — длительность нахождения канала в последнем состоянии;
— Входящая категория SS7 — категория SS7 входящего вызова до преобразований;
— Входящий номер CdPN — номер вызываемого абонента до преобразований;
— Входящий номер CgPN — номер вызывающего абонента до преобразований;
— Исходящая категория SS7 — категория SS7 входящего вызова после преобразований;
— Исходящий номер CdPN — номер вызываемого абонента после преобразований;
— Исходящий номер CgPN — номер вызывающего абонента после преобразований;
— Обновление состояний канала происходит раз в 5 секунд.

4.1.2.4 График загруженности процессора

В разделе отображается информация о загрузке процессора в реальном времени (10 минутный интервал). Графики статистики строятся на основании усредненных данных за каждые 3 секунды работы устройства.

Навигация между графиками мониторинга по отдельным параметрам осуществляется с помощью кнопок и . Для облегчения визуальной идентификации все графики имеют различную цветовую окраску.

— TOTAL — общий процент загрузки процессора;
— IO — процент процессорного времени, потраченного на операции ввода/вывода;
— IRQ — процент процессорного времени, потраченного на обработку аппаратных прерываний;
— SIRQ — процент процессорного времени, потраченного на обработку программных прерываний;
– **USR** – процент использования процессорного времени пользовательскими программами;
– **SYS** – процент использования процессорного времени процессами ядра;
– **NIC** – процент использования процессорного времени программами с измененным приоритетом.

4.1.2.5 Мониторинг VoIP субмодулей

В разделе отображается информация об установленных субмодулях SM-VP, а также информация о состоянии каналов этих субмодулей.

Информация о соединении по каналу

– **Порт/канал** – данные о порте/канале:
– протокол сигнализации (VoIP);
– координаты порта: № субмодуля VoIP: № канала;
– Callref – идентификатор вызова;
– Связанный порт/канал – данные о связанном порте/канале:
 – протокол сигнализации связанного порта (PRI/SS7/VoIP);
 – координаты связанного порта: № потока:№ канала для PRI/SS7, либо № субмодуля VoIP:№ канала для VoIP.
– Связанный Callref – идентификатор вызова по связанному каналу.
– Состояние – состояние канала:
 – Off – канал выключен;
 – Block – канал заблокирован;
 – Init – инициализация канала;
 – Idle – канал в исходном состоянии;
 – In-Dial/ Out-Dial – входящий/исходящий набор номера;
 – In-Call/ Out-Call – входящее/исходящее занятие;
 – In-Busy/ Out-Busy – выдача сигнала занято;
 – Talk – канал в разговорном состоянии;
 – Release – освобождение канала;
 – Wait-Ack – ожидание подтверждения;
 – Wait-CID – ожидание CgPN (АОН);
 – Wait-Num – ожидание набора номера;
 – Hold – абонент был поставлен на удержание;
– Таймер состояния – длительность нахождения канала в последнем состоянии;
– Входящая категория SS7 – категория SS7 входящего вызова до преобразований;
– Входящий номер CdPN – номер вызываемого абонента до преобразований;
– Входящий номер CgPN – номер вызывающего абонента до преобразований;
– Исходящая категория SS7 – категория SS7 входящего вызова после преобразований;
– Исходящий номер CdPN – номер вызываемого абонента после преобразований;
– Исходящий номер CgPN – номер вызывающего абонента после преобразований.

Состояния каналов

– Idle (серый) – исходное состояние, канал готов обслужить вызов;
– Active (зеленый) – активное состояние, канал занят активным вызовом;
– Reserved (желтый) – канал зарезервирован под служебные нужды (выдача тоновых сигналов «занято», «КПВ», «ответ стаций») либо под новый вызов с его участием. На SMG каналы не резервируются.

Для просмотра подробной информации по каналу необходимо выделить его в таблице нажатием левой кнопки мыши.

Информация об IP-соединении по каналу

– State – состояние канала (описание приведено выше);
– Codec – используемый кодек (в квадратных скобках указывается Payload Type);
– Status – статус передачи медиаинформации, варианты:
 – Good – канал в работе;
 – Loss of RTP – потеря встречного RTP потока (при истечении «Таймаут ожидания RTP-пакетов»);
 – VBD – по каналу установлена связь в режиме передачи данных;
 – T38 – по каналу установлена факсимильная связь с использованием протокола T.38;
– Mode – режим работы медиаканала:
 – sendrecv – канал работает в двустороннем режиме (прием и передача);
 – sendonly – канал работает в одностороннем режиме, только на передачу;
Цифровой шлюз SMG

– **recvonly** — канал работает в одностороннем режиме, только на прием;
– **inactive** — канал не активен, прием и передача неактивны;
– **SSRC** — значение поля SSRC (Synchronization Source) для исходящего от устройства RTP потока;
– **IP:port remote** — удаленный IP-адрес и порт источника RTP-потока;
– **IP:port local** — локальный IP-адрес и порт источника RTP-потока;
– **MAC remote** — удаленный MAC-адрес источника RTP-потока;
– **MAC local** — локальный MAC-адрес источника RTP-потока.

4.1.2.6 Сигнализация об авариях. Журнал аварийных событий

При возникновении аварии информация о ней выводится в заголовке WEB-интерфейса с указанием номера аварийного потока, группы линий ОКС-7, сигнального линка или неисправного модуля. Если активных аварий несколько, в заголовке WEB-интерфейса выводится наиболее критичная в текущий момент авария.

При отсутствии аварии выводится сообщение «Аварий нет».

Примеры выводимых сообщений об авариях:

<table>
<thead>
<tr>
<th>Аварийное сообщение</th>
<th>Расшифровка</th>
</tr>
</thead>
<tbody>
<tr>
<td>Конфигурация не прочитана</td>
<td>ошибка файла конфигурации</td>
</tr>
<tr>
<td>Нет связи с SIP-модулем</td>
<td>Авария программного модуля, отвечающего за работу VoIP</td>
</tr>
<tr>
<td>Нет связи с VoIP-субмодулем #</td>
<td>авария субмодуля SM-VP-300</td>
</tr>
<tr>
<td>Группа линий ОКС-7 (линксет) # не в работе</td>
<td>авария группы линий ОКС-7</td>
</tr>
<tr>
<td>Авария потока E1 #</td>
<td>авария потока E1</td>
</tr>
<tr>
<td>Авария линка ОКС-7. Линксет #, поток E1 #</td>
<td>авария линка ОКС–7</td>
</tr>
<tr>
<td>Синхронизация от локального источника. Все заданные источники неработочие</td>
<td>потеря источника синхронизации</td>
</tr>
<tr>
<td>Удаленная авария потока E1 #</td>
<td>удаленная авария потока E1</td>
</tr>
<tr>
<td>Синхронизация от менее приоритетного источника</td>
<td>потеря основного источника синхронизации, текущий источник менее приоритетный</td>
</tr>
<tr>
<td>Не удалось отправить CDR-файлы по FTP</td>
<td>проблема отправки файла CDR на FTP – сервер</td>
</tr>
<tr>
<td>Оперативная память заканчивается</td>
<td>достигнут один из порогов загруженности оперативной памяти устройства</td>
</tr>
<tr>
<td>Высокая температура процессора</td>
<td>достигнут один из порогов температуры процессора</td>
</tr>
<tr>
<td>Высокая загрузка процессора</td>
<td>достигнут один из порогов загрузки процессора</td>
</tr>
<tr>
<td>Транзит на потоке E1</td>
<td>не удалось установить полупостоянное соединение для транзита канала потока E1</td>
</tr>
</tbody>
</table>

В меню «Журнал аварийных событий» выводится список аварийных событий, ранжированных по дате и времени.
Таблица аварий

- **Очистить** – удалить существующую таблицу аварийных событий;
- № – порядковый номер аварии;
- **Время** – время возникновения аварии в формате ЧЧ:ММ:СС;
- **Дата** – дата возникновения аварии в формате ДД/ММ/ГГ;
- **Тип** – тип аварии:
 - **CONFIG** – критическая авария, авария файла конфигурации;
 - **SIPT-MODULE** – критическая авария, авария программного модуля, отвечающего за работу VoIP;
 - **LINKSET** – критическая авария, группа линий ОКС-7 не в работе;
 - **STREAM** – критическая авария, поток E1 не в работе;
 - **SM-VP DEVICE** – авария, неисправность модуля SM-VP;
 - **SS7LINK** – авария на сигнальном канале ОКС – 7;
 - **SYNC** – авария синхронизации, пропадание источника синхронизации;
 - **STREAM-REMOTE** – предупреждение, удаленная авария потока E1;
 - **CDR-FTP** – авария либо предупреждение, ошибка отправки файла CDR на FTP-сервер;
 - **TRANSIT** – критическая авария, не удалось установить полупостоянное соединение для транзита канала потока E1
- **Состояние** – статус аварийного состояния:
 - критическая авария, мигающий красный индикатор – авария, требующая незамедлительного вмешательства обслуживающего персонала, влияющие на работу устройства и оказания услуг связи;
 - авария, красный индикатор – некритическая авария, так же требуется вмешательство персонала;
 - предупреждение, желтый индикатор – авария, которая не влияет на оказание услуг связи;
 - OK, зеленый индикатор – авария устранена;
- **Параметры** – подробное описание аварии.
4.1.2.7 Мониторинг интерфейсов

Данный раздел предназначен для мониторинга состояния сетевых интерфейсов и остановки/запуска VPN/PPTP-интерфейсов.

4.1.3 Источники синхронизации

Для синхронизации устройства от нескольких источников применяется алгоритм приоритетного списка. Суть его заключается в следующем: при пропадании синхросигнала от текущего источника просматривается список на наличие активных сигналов от источников с более низким приоритетом. При восстановлении сигнала от источника с более высоким приоритетом происходит переключение на него. Также возможно иметь несколько источников с одинаковым приоритетом, при этом при восстановлении сигнала с тем же приоритетом переключения не произойдет.

Можно задать до 4 источников синхронизации (от любого из 4 потоков Е1).

Формирование списка происходит при помощи кнопок: — «Добавить источник»; — «Удалить».

Изменение приоритета источника производится кнопками «Верх»/«Вниз» напротив каждого источника. Самым приоритетным считается значение «0», самый низкий приоритет имеет значение «14».

— Таймаут потери сигнала — временной интервал, в течение которого не происходит переключение на менее приоритетный источник синхронизации при пропадании сигнала. Если сигнал восстановится в течение этого интервала, то переключения не произойдет;

— Таймаут возврата сигнала — временной интервал, в течение которого должен быть активен вновь появившийся синхросигнал от более приоритетного источника до того, как на него будет осуществлено переключение.

Если на потоке, с которого принимается синхросигнал, установлен протокол PRI, то на подключенном потоке на взаимодействующей стороне также должен быть установлен протокол PRI, иначе синхросигнал с потока захвачен не будет, что приведет к появлению проскальзываний (slip).
4.1.4 CDR-записи

В данном разделе производится настройка параметров для сохранения детализированных записей о вызовах.

CDR – детализированные записи о вызовах, позволяют сохранить историю о совершенных через шлюз SMG вызовах.

Параметры сохранения CDR-записей

- **Включить сохранение CDR записей** – при установленном флаге шлюз будет формировать CDR записи;
- **Период сохранения: Дни, Часы, Минуты** – период формирования CDR записей и их сохранения в оперативной памяти устройства;
– Добавить заголовок – при установленном флаге в начало CDR файла записывается заголовок вида: SMG4. CDR. File started at 'YYYYMMDDhhmmss', где 'YYYYMMDDhhmmss' время начала сохранения записей в файл;
– Отличительный признак – задает отличительный признак, по которому можно идентифицировать устройство, создавшее запись;

Настройки резервного FTP сервера

– Сохранять на FTP – при установленном флаге CDR записи будут передаваться на резервный FTP-сервер;
– FTP сервер – IP-адрес резервного FTP-сервера;
– FTP порт – TCP-порт резервного FTP-сервера;
– Путь к файлу – указывает путь к папке на резервном FTP сервере, в которую будут сохраняться CDR записи;
– Логин для FTP – имя пользователя для доступа к резервному FTP серверу;
– Пароль для FTP – пароль пользователя для доступа к резервному FTP серверу.

В случае если FTP сервер недоступен, CDR-записи сохраняются в оперативной памяти устройства, на хранение CDR файлов выделено 30 MB. При заполнении памяти в определенных границах будет индицироваться авария. Индикация сохранения CDR-файлов приведена в разделе 1.6 Световая индикация.

При достижении определенного уровня аварии отправляется соответствующий SNMP trap.

Прочие настройки

– Сохранять неуспешные вызовы – при установленном флаге записывать в CDR файлы неуспешные вызовы (не окончившиеся разговором);
– Сохранять пустые файлы – при установленном флаге сохранять не содержащие записей CDR-файлы;
– Сохранять Redirecting number – при установленном флаге в записи CDR будет присутствовать дополнительное поле Redirecting number, иначе в случае переадресованного вызова дополнительное поле Redirecting number будет отсутствовать, а сам номер, с которого была совершена переадресация, будет помещен в параметре Calling party number;
– Сохранять метку переадресации – при установленном флаге в записи CDR будет присутствовать дополнительное поле «метка переадресации»;
– Сохранять категорию вызова – при установленном флаге в записи CDR будет присутствовать дополнительное поле «категория вызывающего абонента» (calling party category).

Модификаторы входящих номеров

Модификаторы входящих номеров – модификаторы, позволяющие преобразовать любые поля, содержащие номера абонентов в записях CDR, которые применяются к этим полям до прохождения звонка через план нумерации.

– CdPN – предназначены для модификаций, основанных на анализе номера вызываемого абонента, принятого из входящего канала;
– CgPN – предназначены для модификаций, основанных на анализе номера вызывающего абонента, принятого из входящего канала;
– RedirPN – предназначены для модификаций, основанных на анализе номера абонента переадресовавшего вызов, принятого из входящего канала.
Модификаторы исходящих номеров

Модификаторы исходящих номеров — модификаторы, позволяющие преобразовать любые поля, содержащие номера абонентов в записях CDR, которые применяются к этим полям после прохождения звонка через план нумерации.

- **CdPN** — предназначены для модификаций, основанных на анализе номера вызываемого абонента, передаваемого в исходящий канал;
- **CgPN** — предназначены для модификаций, основанных на анализе номера вызывающего абонента, передаваемого в исходящий канал;
- **RedirPN** — предназначены для модификаций, основанных на анализе номера абонента, переадресовавшего вызов, передаваемого в исходящий канал.

4.1.4.1 Формат CDR-записи

- заголовок, общий для всего CDR-файла (параметр присутствует, если установлена соответствующая настройка);
- отличительный признак (параметр присутствует, если установлена соответствующая настройка);
- время установления соединения в формате YYYY-MM-DD hh:mm:ss (при неуспешном вызове данный параметр равен времени разъединения);
- длительность вызова, сек;
- причина разъединения согласно ITU-T Q.850;
- информация о соединении;
- информация о вызывающем абоненте:
 - IP-адрес,
 - тип источника,
 - имя абонента/транка (ТГ);
- номер вызывающего абонента на входе;
- номер вызывающего абонента на выходе;
- категория вызывающего абонента на входе;
- категория вызывающего абонента на выходе;
- номер переадресовывающего абонента (Redirecting number) (параметр присутствует, если установлена соответствующая настройка);
- информация о вызываемом абоненте:
 - IP-адрес,
 - тип назначения,
 - имя абонента/транка (ТГ);
- номер вызываемого абонента на входе;
- номер вызываемого абонента на выходе;
- время поступления вызова в формате: YYYY-MM-DD hh:mm:ss;
- время разъединения соединения в формате: YYYY-MM-DD hh:mm:ss;
- метка переадресации (параметр присутствует, если установлена соответствующая настройка).

Типы источников и назначений

- **SIP-user** — абонент SIP;
- **trunk-SIP** — транк SIP;
- **trunk-SS7** — транк ОКС-7;
- **trunk-Q931** — транк ISDN PRI.
Типы информации о соединении

- user answer – успешный вызов;
- user called, but unanswer – неуспешный вызов, абонент не ответил;
- unassigned number – неуспешный вызов, не назначенный номер;
- user busy – неуспешный вызов, абонент занят;
- uncomplete number – неуспешный вызов, не полный номер;
- end point equipment out of order – неуспешный вызов, оконечное оборудование не доступно;
- unavailable trunk line – неуспешный вызов, транк недоступен;
- unavailable v-chan – неуспешный вызов, нет свободных разговорных каналов;
- access denied – неуспешный вызов, доступ запрещен;
- RADIUS-response not received – неуспешный вызов, ответ от RADIUS сервера не получен;
- other cause – неуспешный вызов, другая причина.

Метка переадресации

- normal – вызов без переадресации;
- redirecting – переадресованный вызов (вызов после переадресации, содержащий Redirecting number);
- redirected – поступивший вызов, который был переадресован.

4.1.4.2 Пример CDR-файла

Пример CDR-файла, содержащего две записи (включено сохранение заголовка и отличительного признака):

SMG4. CDR. File started at '20111024093328'

27;2011-10-24 09:33:37;2;16;user answer;192.168.16.200;sip-user; undef;520001;520001;192.168.16.200;sip-user;undef;520000;520000;2011-10-24 09:33:35;2011-10-24 09:33:39;

27;2011-10-24 09:38:56;242;16;user answer;192.168.16.202;sip-user;undef;7000000;7000000;192.168.16.200;sip-user;undef;520000;520000;2011-10-24 09:38:45;2011-10-24 09:42:58;

4.1.4.3 Структура CDR-записей при различных настройках

CDR на SMG при настройке по умолчанию (флаги в подпункте «Прочие настройки» не установлены) содержит строки следующего вида:

;2013-10-08 15:10:14;2;16;user answer;0.0.0.0;trunk-SS7;TrunkGroup00;650000;650000;0.0.0.0;trunk-SS7;TrunkGroup00;80123456789;80123456789;2013-10-08 15:10:12;2013-10-08 15:10:16;

Где

2013-10-08 – дата начала разговора;
15:10:14 – время начала разговора;
2 – длительность вызова (в секундах);
16 – причина разъединения согласно ITU-T Q.850;
user answer – информация о соединении;
0.0.0.0 – IP-адрес, с которого поступил вызов (при звонке с TDM имеет вид 0.0.0.0);
trunk-SS7 – тип источника;
TrunkGroup00 – имя вызывающего абонента или название входящего транка (ТГ);
650000 – номер вызывающего абонента на входе SMG (до преобразования на входящей ТГ);
650000 – номер вызывающего абонента на выходе SMG (после преобразования на входящей и исходящей ТГ);
0.0.0.0 – IP-адрес, на который направляется вызов (при звонке в TDM имеет вид 0.0.0.0);
trunk-SS7 – тип назначения;
TrunkGroup00 – имя вызываемого абонента или название исходящего транка (ТГ);
80123456789 – номер вызываемого абонента на входе SMG (до преобразования на входящей ТГ);
80123456789 – номер вызываемого абонента на выходе SMG (после преобразования на входящей и исходящей ТГ);
2013-10-08 15:10:12 – время поступления вызова;

В качестве номера вызывающего абонента будет записываться:
– при обычном вызове – номер из поля Calling party number (протокол PRI и SS7) или из поля From (протокол SIP);
– при получении IAM (протокол SS7) или SETUP (протокол PRI) с информацией о переадресации – номер из поля Redirecting number;
– при получении 302 сообщения (протокол SIP) – номер из поля To.

В качестве номера вызываемого абонента будет записываться:
– при обычном вызове – номер из поля Called party number (протокол PRI и SS7) или из поля To (протокол SIP);
– при получении IAM (протокол SS7) или SETUP (протокол PRI) с информацией о переадресации – номер из поля Called party number;
– при получении 302 сообщения (протокол SIP) – номер из поля Contact.

При установке флага «Сохранить категорию вызова» в данной записи добавляются еще два поля:

;2013-10-08 15:10:14;2;16;user answer;0.0.0.0;trunk-SS7;TrunkGroup00;650000;650000;1;3;0.0.0.0;trunk-SS7;TrunkGroup00;80123456789;80123456789;2013-10-08 15:10:12;2013-10-08 15:10:16;

Где

1 – категория вызывающего абонента на входе (до преобразования на входящей ТГ);
3 – категория вызывающего абонента на выходе (после преобразования на входящей и исходящей ТГ).

При установке флага «Сохранить Redirecting number» будут добавлены следующие два поля:

;2013-10-08 18:27:13;1;16;user answer;0.0.0.0;trunk-SS7;TrunkGroup00;650000;37650000;1;1;650016;3835650016;0.0.0.0;trunk-SS7;TrunkGroup00;80123456789;58123456789;2013-10-08 18:27:09;2013-10-08 18:27:14;

Где

650016 – Redirecting number (номер, с которого была произведена переадресация) на входе SMG (до преобразования на входящей ТГ) – номер из поля Redirecting number (протокол PRI и SS7) или из поля To (протокол SIP);
3835650016 – Redirecting number на выходе SMG (после преобразования на входящей и исходящей ТГ) – номер из поля Redirecting number (протокол PRI и SS7) или из поля To (протокол SIP).

В данном случае в качестве номера вызывающего абонента будет записываться номер из поля Calling party number (протокол PRI и SS7) или из поля From (протокол SIP):
– при получении IAM (протокол SS7) или SETUP (протокол PRI) с информацией о переадресации – номер из поля Redirecting number;
– при получении 302 сообщения (протокол SIP) – номер из поля To.
При установке флага «Сохранять метку переадресации» для переадресованных вызовов будет добавлено следующее поле:

;2013-10-09 17:58:26;5;16;user answer;192.168.0.2;trunk-SIP;TrunkGroup01;650000;650000;1;1;001;0.0.0.0;trunk-SS7;TrunkGroup00;650023;650023;2013-10-09 17:58:24;2013-10-09 17:58:31;redirecting;

Где

redirecting – метка переадресации.
Метка переадресации может иметь значение:
– redirecting – вызывающий абонент переадресовал вызов на вызываемого абонента;
– redirected – вызов вызывающего абонента был перенаправлен на другого абонента.

4.1.5 Потоки E1

В этом разделе1 производится настройка сигнализации и параметров каждого потока E1.

4.1.5.1 Выбор протокола сигнализации

Выбор протокола сигнализации, используемого на потоке, производится в выпадающем списке «Протокол сигнализации».

Устройство поддерживает следующие протоколы сигнализации:
– Q.931 (User, Network);
– SS7 (ОКС-7);
– QSIG для передачи имени абонента;
– CorNet для передачи имени абонента.

4.1.5.2 Настройка физических параметров

Физические параметры

– Включен – физическое включение потока;
– Передача/контроль CRC4 – формирование контрольной суммы CRC4 на передаче и контроль на приеме;

1 По умолчанию на устройстве SMG-2 доступен только 1 поток E1, для активации второго потока необходимо установить специальную лицензию, подробнее о лицензиях в разделе 4.1.19 Обновление лицензии
– Эквалайзер – при установленном флаге происходит усиление передаваемого сигнала;
– Индикация Alarm – при установленном флаге в случае локальной аварии на потоке будет индикация об аварии (на устройстве загорится индикатор ALARM, авария будет занесена в журнал аварий);
– Индикация Remote Alarm – при установленном флаге в случае удаленной аварии на потоке будет индикация об аварии (на устройстве загорится индикатор ALARM, авария будет занесена в журнал аварий);
– Тип линейного кода – тип кодирования информации в канале (HDB3, AMI);
– Индикация Slip – при установленном флаге в случае обнаружения проскальзывания в приемном тракте будет индикация об аварии;
– Таймаут обнаружения Slip – периодичность опроса параметров потока у платы, если на данном потоке обнаружилось проскальзывание, то в течение данного таймаута шлюз будет сигнализировать об аварии.

4.1.5.3 Настройка протокола сигнализации Q.931

Вкладка Физические параметры/Q.931.
Цифровой шлюз SMG

Q.931 LAPD – параметры канального уровня LAPD протокола Q.931

- **T200** – таймер передачи. Этот таймер определяет промежуток времени, в течение которого должен быть получен ответ на фрейм, после чего возможна передача следующих фреймов. Данный промежуток должен быть больше, чем время, которое требуется, чтобы передать кадр и получить его подтверждение;
- **T203** – максимальное время, в течение которого оборудованию позволено не обмениваться фреймами со встречным устройством;
- **N200** – количество попыток повторной передачи фреймов.

Параметры протокола сигнализации Q.931

- **Транковая группа** – наименование транковой группы, в которую входит поток Е1;
- **Профиль маршрутизации по расписанию** – выбор профиля маршрутизации по расписанию;
- **Категория доступа** – выбор категории доступа;
- **План нумерации** – определяет план нумерации, в котором будет осуществляться маршрутизация для вызова принятого с данного порта (это необходимо для согласования планов нумерации);
- **Typ плана нумерации** – задает тип плана нумерации ISDN. Для использования общепринятого плана нумерации E.164 выберите ISDN/telephony;
- **Категория АОН для входящих вызовов** – категория АОН, присваиваемая принятым с данного порта вызовом;
- **Передача категории АОН вызывающего** – разрешает передачу категории АОН вызывающего абонента в информационном элементе CgPN сообщения SETUP в виде первой цифры номера.

Для правильной работы необходима поддержка такого режима на встречной стороне.

- **Сообщение «Конец набора»** – выдача информационного элемента «Sending Complete» при возникновении события «Конец набора» (приход такого события со стороны связанного канала, достижение максимального количества цифр согласно префиксу, таймаут ожидания набора следующей цифры);
- **Не выдавать RESTART интерфейса** – при установленном флаге шлюз не выдает в линию сообщение RESTART при восстановлении потока (поднятии канального уровня LAPD);
- **Не выдавать RESTART канала** – при установленном флаге шлюз не выдает в линию сообщение RESTART по истечении таймера T308. Данный таймер включается после передачи в канал сообщения RELEASE и сбрасывается при получении в ответ сообщения RELEASE COMPLETE. Если в течение действия таймера T308 сообщение RELEASE COMPLETE не было получено, то для освобождения канала передается сообщение RESTART;
- **Занятие каналов** – определяет порядок выделения физического канала при совершении исходящего вызова. Можно выбрать один из четырех типов: последовательно вперед, последовательно назад, начиная с первого вперед, начиная с последнего назад. Для уменьшения конфликтных ситуаций при соединении со смежными АТС рекомендуется устанавливать инверсные типы занятия каналов;
- **Выдавать DialTone при входящем overlap-занятии** – при установленном флаге шлюз при входящем overlap-занятии выдает в линию DialTone (сигнал готовности «Ответ станции»). В данном случае overlap-занятие – прием сообщения SETUP без индикации sending complete, при этом для возможности проключения тракта в сообщении SETUP должен присутствовать индикатор progress indicator=8.
Параметры передачи имен

На этой вкладке конфигурируется способ приёма/передачи имён абонентов и кодировка принимаемого/передаваемого имени.

Метод передачи имен:
- Нет - передача имён отключена;
- Q.931 DISPLAY - передача в элементе Q.931 Display с Codeset 5;
- QSIG-NA - передача по протоколу QSIG-NA (ECMA-164);
- CORNET - передача по протоколу Siemens CorNet;
- CORNET HICOM-350 - передача по протоколу Siemens CorNet с дополнительной информацией для АТС Hicom;
- AVAYA DISPLAY - передача в элементе Q.931 Display с Codeset 6;

Метод кодирования имени:
- Транзит - перекодирование не осуществляется (по умолчанию считается, что принято имя в UTF-8);
- CP 1251 - кодировка Windows-1251;
- Siemens adaptation - кодировка ATC Siemens;
- AVAYA adaptation - кодировка ATC AVAYA;
- Транслитерация латиницей - русские имена будут транслитерироваться латинскими буквами.

Использование каналов

На этой вкладке конфигурируется способ приёма/передачи имён абонентов и кодировка принимаемого/передаваемого имени.
В данном меню можно включить в работу, либо выключить из работы каналы потока Е1. Для этого нужно установить, либо снять флаг напротив соответствующего канала. В столбце «Транк группа» отображается номер группы, в которой данные каналы настроены (используется, когда транковая группа устанавливается не на весь поток, а на каналы потока).

4.1.5.4 Настройка протокола сигнализации ОКС-7 (SS7)

Параметры ОКС-7

- **Группа линий ОКС-7** – выбор линксета (группы линий ОКС-7);
- **Идентификатор канала (SLC)** – идентификатор сигнального канала в группе линий ОКС-7;
- **Встречный код MTP3 (DPC-MTP3)** – код встречного транзитного пункта сигнализации (STP). Используется при работе SMG в квазисвязанном режиме. Если квазисвязный режим не требуется, то необходимо установить значение 0. В этом случае встречный код MTP3 равен значению DPC-ISUP, настраиваемому в конфигурации Группы линий ОКС-7 (п. 4.1.7.2);
- **КИ для D-канала** – номер канального интервала, по которому будет передаваться сигнализация;
- **Bit D в LSU** – установка значения 1 для бита D в поле статуса (SF) сигнальной единицы LSSU (биты D-F в поле статуса SF являются резервными);
Настройки каналов

ISUP CIC код идентификатора каналов — номера разговорных каналов (CIC).

Для автоматической нумерации разговорных каналов необходимо нажать кнопку «Задать».

При этом открывается следующее меню:

- Начальный номер — номер первого разговорного канала;
- Шаг нумерации — шаг нумерации каналов. Каждому следующему каналу будет присвоен номер на «шаг нумерации» больше относительно предыдущего канала;
- Диапазон КИ — выбор значений в данном блоке позволяет назначить нумерацию для всех каналов потока либо для указанного диапазона каналов.

В столбце «Транк группа» отображается номер группы, в которой данные каналы настроены (используется, когда транковая группа устанавливается не на весь поток, а на каналы потока).

В столбце "Транзит" отображается кнопка настройки транзита канала через полупостоянное соединение. Пример настройки и работы соединения приведён в приложении Е.

При нажатии появляется окно, где можно настроить следующие параметры:

1 Только при наличии лицензии на транзит
Настройка транзита

- **Включить транзит** – активировать работу транзита. При включении транзита канал будет изъят из потока ОКС-7 и будет напрямую передаваться по отдельному полупостоянному соединению через выбранный SIP-интерфейс;
- **Интерфейс SIP** – интерфейс, через который будет осуществляться транзит;
- **Кодек** - голосовой кодек, который будет использоваться для транзита. При выборе значения "по умолчанию" согласовываться будут те кодеки, которые настроены на выбранном SIP-интерфейсе;
- **Поток E1** – поток E1 на удалённой стороне, к которому будет осуществляться присоединение канала;
- **Номер канала** – канал потока E1 на удалённой стороне, к которому будет осуществляться присоединение канала;
- **Активная сторона** – при выборе этой опции SMG начнёт инициировать соединение для транзита этого канала. Если опция отключена, то для этого канала SMG станет принимающей стороной.

Для того, чтобы задать транзит всех каналов на потоке с идентичными настройками, следует нажать кнопку "Транзит потока". Настройки аналогичный индивидуальным для каждого канала, но поле "номер канала" будет отсутствовать. Номер канала на удалённой стороне будет выставлен равным номеру канала на потоке.

4.1.6 План нумерации

В этом разделе задаются префиксы выхода на транковые группы.

На устройстве реализовано до 16-ти независимых планов нумерации. Каждый план нумерации может иметь своих абонентов и префиксы. Количество активных планов конфигурируется в разделе 4.1.1 Системные параметры.

Существует 2 критерия, по которым происходит маршрутизация звонков на устройстве:

- поиск по номеру вызывающего – CgPN (Calling Party Number);
- поиск по номеру вызываемого – CdPN (Called Party Number);

При поступлении вызова в план нумерации начинается его маршрутизация, изначально происходит поиск на совпадение с масками номеров CgPN. В случае нахождения совпадения происходит маршрутизация вызова и дальнейший поиск прекращается.

В случае если параметры вызова не совпали с масками CgPN и с номером абонента, происходит поиск по всем маскам CdPN, сконфигурированным в плане нумерации.
Если в параметрах префикса одновременно сконфигурированы маски для номеров CgPN и CdPN, то данное правило работает по логике ИЛИ, т.е. одновременного анализа по номеру CgPN и CdPN не происходит.

Параметры плана нумерации

- **Имя** – название плана нумерации;
- **SIP-домен** – имя домена для регистрации;

Проверка нумерации по номеру – проверка возможности маршрутизации по номеру, введенному в данное поле.

Проверка осуществляется по маскам вызывающего и вызываемого абонентов. В результате поиска будет определена возможность маршрутизации по номеру вызывающего (CgPN) либо вызываемого (CdPN) и номер префикса, если маршрутизация возможна

- **ST** – при установленном флаге при поиске учитывается признак конца набора;

Поиск масок по шаблону – поиск префикса по шаблону номера.

Для создания нового префикса необходимо выбрать меню «Объекты» – «Добавить объект», либо нажать на кнопку под списком, и в открывшейся форме заполнить параметры префикса:

- **Название** – имя плана нумерации;
- **План нумерации** – выбор плана нумерации;
- **Категория доступа** – установка категории доступа;
- **Проверять категорию доступа** – при установленном флаге проверяется возможность маршрутизации по данному префиксу на основании прав, определяемых категориями доступа;
- **Тип префикса** – установка типа префикса;
 - транковая группа – выход на транковую группу;
 - транковое направление – выход на транковое направление;
- **Смена плана нумерации** – позволяет при наборе этого префикса перейти в другой план нумерации. При выборе данного типа префикса будет доступен выбор опции «новый план нумерации», в которой нужно выбрать в какой план нумерации осуществлять переход.
Для транковой группы:

- **Транк группа** – транковая группа, на которую будет маршрутизирован вызов по этому префиксу;
- **Направление** – тип доступа к транковой группе: местный, вызов спецслужбы, зоновый, на ведомственную сеть, междугородная связь, международная связь. Используется для ограничения связи при сбое в обмене данными с RADIUS сервером (см. раздел 4.1.13 Настройка RADIUS);
- **Запрос АОН** – указывает на необходимость информации АОН (номер и категория вызывающего абонента) для выхода на транковую группу, указанную в поле «Транковая группа». При поступлении вызова от взаимодействующего узла и отсутствии в этом вызове информации АОН к узлу будет отправлен запрос АОН (сообщение INR по сигнализации ОКС-7);
- **АОН обязателен** – указывает на то, что информация АОН обязательна при выходе на направление. Если информация АОН не может быть получена от вызывающей стороны, то процесс установления соединения прерывается;
- **Режим набора** – способ передачи номера:
 - *enblock* – после накопления всей адресной информации,
 - *overlap* – без ожидания накопления всей адресной информации;
- **Не посылать конец набора (ST)** – при установленном флаге не передавать признак конца набора (ST – в ОКС или sending complete в PRI);
- **Приоритет** – настройка приоритета префикса в диапазоне от 0 до 100. Префикс с меньшим значением данного параметра обладает большим приоритетом (0 – наивысший приоритет, 100 – наименьший приоритет);

Для транкового направления:

- **Транковое направление** – транковое направление (набор транковых групп, объединенных в общее направление), на которое будет маршрутзирован вызов по этому префиксу;
- **Направление** – тип доступа к транковой группе: местный, вызов спецслужбы, зоновый, на ведомственную сеть, междугородная связь, международная связь. Используется для ограничения связи при сбое в обмене данными с RADIUS сервером (см. раздел 4.1.13 Настройка RADIUS);
- **Запрос АОН** – указывает на необходимость информации АОН (номер и категория вызывающего абонента) для выхода на транковую группу, указанную в поле «Транковая группа». При поступлении вызова от взаимодействующего узла и отсутствии в этом вызове информации АОН к узлу будет отправлен запрос АОН (сообщение INR по сигнализации ОКС-7);
- **АОН обязателен** – указывает на то, что информация АОН обязательна при выходе на направление. Если информация АОН не может быть получена от вызывающей стороны, то процесс установления соединения прерывается;
- **Режим набора** – способ передачи номера:
 - *enblock* – после накопления всей адресной информации,
-- overlap – без ожидания накопления всей адресной информации;
-- Не посылать конец набора (ST) – при установленном флаге не передавать признак конца набора (ST – в ОКС или sending complete в PRI);
-- Приоритет – настройка приоритета префикса в диапазоне от 0 до 100. Префикс с меньшим значением данного параметра обладает большим приоритетом (0 – наивысший приоритет, 100 – наименьший приоритет);
-- Для смены плана нумерации:
-- Новый план нумерации – план нумерации, в который будет направлен вызов, маршрутный по данному префиксу;
-- Новая категория доступа – категория доступа, которая будет назначена вызывающему абоненту при смене плана нумерации;
-- Приоритет – настройка приоритета префикса в диапазоне от 0 до 100. Префикс с меньшим значением данного параметра обладает большим приоритетом (0 – наивысший приоритет, 100 – наименьший приоритет);

Параметры CdPN:

-- Тип номера – тип номера вызываемого абонента: unknown, subscriber number, national number, international number. Не изменять. Выбранный тип номера будет передаваться в сообщениях сигнализации ОКС-7, ISDN PRI, SIP-I/T при совершении исходящего вызова по префиксу (Не изменять – не преобразовывать тип номера, т.е. передавать в том виде, в котором он был принят из входящего канала);
-- Тип плана нумерации – тип плана нумерации вызываемого абонента, может принимать значения: unknown, isdn/telephony, national, privat, не изменять. Выбранный тип плана нумерации будет передаваться в сообщениях сигнализации ISDN PRI при совершении исходящего вызова по префиксу (Не изменять – не преобразовывать тип номера, т.е. передавать в том виде, в котором он был принят из входящего канала);

Таймеры при прямом выходе (используются при прямом проключении транковых групп без анализа масок префикса – функция «Прямой префикс» в настройках транковой группы):

Данные таймеры работают только при наборе в режиме overlap:

-- Short timer – время в секундах, в течение которого цифровой шлюз будет ожидать продолжения набора, если уже принята часть адресной информации. По умолчанию – 5 с;
-- Duration – таймер продолжительности набора номера. По умолчанию – 30 с.

В разделе «Список масок» конфигурируются маски номеров для маршрутизации по данному префиксу.
Формирование списка происходит при помощи кнопок:

-- «Добавить маску»;
-- «Редактировать маску»;
-- «Удалить маску»;
-- «Посмотреть маску».

-- Маска – шаблон или набор шаблонов, с которым сравнивается принятый из входящего канала номер вызывающего либо вызываемого абонента, предназначенный для осуществления дальнейшей маршрутизации вызова (синтаксис маски описан в разделе 4.1.6.1);
-- Tun – тип маски. Определяет, по какому номеру будет осуществляться маршрутизация – по номеру вызывающего (calling) или вызываемого абонента (called);
Цифровой шлюз SMG

4.1.6.1 Описание маски номера и ее синтаксис

Маска номера представляет собой набор шаблонов `templ`, разделенных спецсимволом `|`. Маска должна быть заключена в круглые скобки. `(templ)` равнозначно `(templ1|templ2|...|templN)`.

Синтаксис:
- `X` или `x` – любая цифра;
- `*` – символ `*`;
- `#` – символ `#`;
- `0-9` – цифры от 0 до 9;
- `D` – символ D.
- `.` – спецсимвол “точка” обозначает, что символ, стоящий перед ним, может повторяться произвольное количество раз (но не более 30 символов на весь номер), например:
 - `(34x.)` – всевозможные комбинации номеров, начинающихся на “34”
 - `[]` – указание диапазона (через тире) либо перечисление (без пробелов, запятых и прочих символов между цифрами) префиксов, например:
 - диапазон `([1-5]XXX)` – все четырехзначные номера, начинающиеся на 1,2,3,4 или 5;
 - перечисление `([138]xx)` – все трехзначные номера, начинающиеся на 1,3 или 8).
 - `{min, max}` – указание количества повторений символа, стоящего перед скобками, например:
 - `(1x(3,5))` – означает, что любых цифр (x) может быть от 3-x до 5-ти и равнозначно маске `(1xxx|1xxxx|1xxxx)`
 - `|` – логическое ИЛИ – используется для разделения шаблонов в маске.
 - `(-)` – маска, используемая только в таблицах модификаторов номера CgPN для вызовов без номера вызывающего абонента. Позволяет добавить номер вызывающего абонента, если он отсутствовал, а также задать индикаторы для этого номера.

Если в плане нумерации присутствуют пересекающиеся префиксы, то при обработке номера в плане нумерации приоритетным будет префикс с наиболее точной маской для конкретного номера, например:

Префикс 1: (2xxxx)
Префикс 2: (23xxx)
При поступлении в план нумерации номера 23456 он обрабатывается по префиксу 2.

Также маски, содержащие произвольное количество повторений (x) либо диапазон количества повторений {min, max}, менее приоритетны, чем маски с указанием точного количества символов, например:

Префикс 1: (2x(4,7))
Префикс 2: (23xxx)

При поступлении в план нумерации номера 23456, он обрабатывается по префиксу 2.

Маски с указанным диапазоном количества повторений {min, max} приоритетнее, чем маски с любым количеством повторений (x), например:

Префикс 1: (2x.)
Префикс 2: (2x(4,7))

При поступлении в план нумерации номера 23456 он обрабатывается по префиксу 2.

4.1.6.2 Примеры работы маски

Пример 1

Маска содержит 9 шаблонов:

1. #XX# – набирается 4-значный номер, начинающийся и заканчивающийся на #, 2-я и 3-я цифры номера могут принимать любое значение от 0 до 9, а также * и #.
 Такой шаблон обычно используется для выключения использования ДВО с телефонного аппарата;
2. *#XX# – набирается 5-значный номер, начинающийся на *# и заканчивающийся на #, 3-я и 4-я цифры номера могут принимать любое значение от 0 до 9, а также * и #.
 Такой шаблон обычно используется для контроля использования ДВО с телефонного аппарата;
3. *XX*X.# – набирается N-значный номер, начинающийся на *, далее две любых цифры номера (от 0 до 9, а также * и #), далее *, далее неопределенное количество любых цифр (от 0 до 9, *) до тех пор, пока в наборе не встретится #.
 Такой шаблон обычно используется для заказа ДВО с телефонного аппарата;
4. 112 – набор конкретного номера из 3-х цифр – 112;
5. 011 – набор конкретного номера из 3-х цифр – 011;
6. 0[1-4] – набор 2-значного номера, начинающегося на 0 и заканчивающегося на цифру 1, 2, 3 или 4, т.е. номера 01, 02, 03 и 04;
7. 6[2-9]XXX – набирается 5-значный номер, начающийся на цифру 6, вторая цифра номера – любая из диапазона от 2 до 9, три последних цифры – любые от 0 до 9, а также * и #;
8. 5[24]XXXX – набирается 7-значный номер, начающийся на цифру 5, вторая цифра номера – либо 2, либо 4; пять последних цифр – любые от 0 до 9, а также * и #;
9. 810X{11, 15} – набирается номер, начинающийся на цифры 810, следом за которыми разрешено набрать от 11 до 15 любых цифр от 0 до 9, а также * и #. С учетом 3-х первых цифр длина номера по этому правилу – от 14 до 18 цифр.
Пример 2

Необходимо сконфигурировать номерной план так, чтобы все номера, начинающиеся на 1 и имеющие длину 3, маршрутизировались на Транк0, а номер 117 отдельно от них на Транк1.

Для решения данной задачи сконфигурируем префиксы следующим образом:
1. первый префикс с маской (117) на Транк1;
2. второй префикс с маской (11[0-689][1][02-9]х) на Транк0.

Во втором префиксе шаблоны перекрывают все номера вида «1хх», за исключением номера 117.

4.1.6.3 Пример работы таймеров

Рассмотрим работу таймеров на примере набора с перекрытием номера 011 (пример 1 из предыдущего раздела). Пусть значения таймеров:
L=10 сек
S=5 сек

Прием первой цифры – 0. В маске для такого набора присутствуют 2 правила: 011 и 0[1-4]. После приема первой цифры полного совпадения ни с одним правилом нет, включается L-таймер (10 секунд) на ожидание следующей цифры (если в течение 10 секунд не будет принята следующая цифра, то сработает таймаут, и поскольку совпадения ни с одним правилом не получено, будет ошибка набора).

Прием второй цифры – 1. Совпадение с 6-м правилом 0[1-4] (префикс 01), поскольку совпадение с правилом есть, но возможно, что будет совпадение с 5-м правилом – 011, то включается S-таймер (5 секунд) на ожидание следующей цифры (если в течение 5 секунд не будет принята следующая цифра, то сработает таймаут, и поскольку совпадение с правилом уже есть, то вызов будет успешно направлен по данной маске).

Прием третьей цифры – 1, с 6-м правилом при этом совпадение теряется и появляется совпадение с 5-м правилом. Это совпадение окончательное, поскольку других правил, с которыми мог бы совпасть дальнейший набор, в маске нет. Вызов немедленно маршрутизируется по 5-му правилу.

4.1.7 Маршрутизация

4.1.7.1 Транковые группы

Транковая группа представляет собой набор соединительных линий (транков), в качестве которых могут быть: каналы потока E1, полоса пропускания среды передачи данных (IP-каналы). По каналам потока E1 работают сигнализации Q.931, ОКС-7, по IP-каналам – интерфейс SIP-T. Для редактирования транковой группы необходимо дважды кликнуть левой кнопкой мыши по соответствующей строке в таблице групп или выделить группу и нажать кнопку под списком.

Для удаления транковой группы необходимо выделить группу и нажать кнопку под списком, либо выбрать меню «Объекты» – «Удалить объект».

Цифровой шлюз SMG
Максимально возможно создать до 64 транковых групп.

Параметры транковой группы:

Для доступа к транковой группе в конфигурации устройства должны присутствовать префиксы, осуществляющие выход на данную группу.

- **Название** – имя транковой группы;
- **Состав группы** – состав транковой группы (каналы потока Е1, поток с сигнализацией Q.931, группа линий ОКС или SIP интерфейс), может быть изменен при редактировании группы;
- **Поток Е1** – поток Е1, указывается в случае, если составом группы являются каналы Е1. Чтобы включить канал в транковую группу, нужно напротив него установить флаг;
- **Прямой префикс** – выход на префикс без анализа номера вызывающего либо вызываемого абонента. Предназначен для коммутации всех вызовов из одной транковой группы в другую независимо от набранного номера (без создания масок в префик сах). При осуществлении набора в режиме overlap используются таймеры прямого набора, настраиваемые в прямом префиксе;

Входящая связь:
- **Запрет входящих вызовов** – при установленном флаге прием входящих вызовов запрещен. Установка запрета не разрывает текущие установленные соединения;
- **Блокировать передачу Connected number** – не транслировать параметр Connected number, принятый в сообщении протокола Q.931, ОКС-7;
- **Профиль RADIUS** – выбор используемого профиля RADIUS (описание в пункте 4.1.13.2);

Модификаторы входящей связи:
- **CdPN** – предназначены для модификаций, основанных на анализе номера вызываемого абонента, принятого из входящего канала;
- **CgPN** – предназначены для модификаций, основанных на анализе номера вызывающего абонента, принятого из входящего канала;
Исходящая связь:

- Запрет исходящих вызовов – при установленном флаге передача исходящих вызовов запрещена. Установка запрета не разрывает текущие установленные соединения;
- Резервная транковая группа – задает транковую группу, на которую будет переведена маршрутизация вызова при невозможности маршрутизации по текущей транковой группе (все каналы занятые или нерабочие);

Модификаторы исходящей связи:

- CdPN – предназначены для модификаций, основанных на анализе номера вызываемого абонента, передаваемого в исходящий канал;
- CgPN – предназначены для модификаций, основанных на анализе номера вызывающего абонента, передаваемого в исходящий канал;
- Original Called Number – предназначены для модификаций, основанных на анализе исходного номера вызываемого абонента (original Called number), передаваемого в исходящий канал;
- Redirecting Number – предназначены для модификаций, основанных на анализе переадресующего номера (redirecting number), передаваемого в исходящий канал;
- Generic Number – предназначены для модификаций, основанных на анализе общего номера (generic number), передаваемого в исходящий канал;

Для создания, редактирования и удаления групп (как и для других объектов) используется меню «Объекты» – «Добавить объект», «Объекты» – «Редактировать объект» и «Объекты» – «Удалить объект», а также кнопки:

- «Добавить транковую группу»;
- «Редактировать параметры транковой группы»;
- «Удалить транковую группу».

4.1.7.2 Группы линий ОКС-7

Настройка протокола сигнализации ОКС-7 производится в разделе «Потоки E1» (п.4.1.5.4).

«Группа линий ОКС-7» представляет собой звено сигнализации, включающее в себя группу сигнальных каналов. Для создания, редактирования и удаления групп линий используются меню «Объекты» – «Добавить объект», «Объекты» – «Редактировать объект» и «Объекты» – «Удалить объект», а также кнопки:

- «Добавить группу линий ОКС-7 (LinkSet)»;
- «Редактировать группу линий ОКС-7 (LinkSet)»;
- «Удалить группу линий ОКС-7 (LinkSet)».
Параметры группы линий ОКС-7

Группа линий ОКС-7

- **Название** – имя группы линий ОКС-7;
- **Транковая группа** – наименование транковой группы, по которой работает группа линий ОКС-7;
- **Категория доступа** – выбор категории доступа;
- **План нумерации** – определяет план нумерации, по которому будет осуществляться маршрутизация для данной группы (это необходимо для согласования планов нумерации);
- **Профиль маршрутизации по расписанию** – выбор профиля маршрутизации по расписанию;
– **Междугородный** — указывает, что это сигнальное звено связано с AMTC. Устанавливается для корректной работы с междугородным типом вызова (используется при транзитах на CAS сигнализации);

– **Индикация аварии** — при установленном флаге в случае возникновения аварии в сигнальном звене ОКС-7 будет индикация об аварии (на устройстве загорится индикатор ALARM, авария будет занесена в журнал аварий);

– **Порядок занятия каналов** — порядок, в котором будут заниматься каналы при совершении исходящих вызовов. Возможные варианты:
 – последовательно вперед;
 – последовательно назад;
 – начиная с первого вперед;
 – начиная с последнего назад;
 – последовательно вперед четные;
 – последовательно назад четные;
 – последовательно вперед нечетные;
 – последовательно назад нечетные;

Для уменьшения конфликтных ситуаций при соединении со смежными АТС рекомендуется устанавливать инверсные типы занятия каналов.

– **Резервная группа линий ОКС-7** — выбор резервной группы линий ОКС-7. В случае недоступности основной группы линий ОКС-7 весь обмен сигнальными сообщениями будет происходить через резервную группу линий ОКС-7;

– **Комбинированный режим** — режим Combined Linkset, при котором в данной группе линий ОКС-7 используются только голосовые потоки, а сигнализация передается через сигнальные каналы первичной и вторичной групп ОКС-7;

– **Первичная группа линий ОКС-7 (primary)** — выбор группы линий ОКС-7 по сигнальным D-каналам, которая будет производить обмен сигнальными сообщениями, относящимися к данной группе линий ОКС-7;

– **Вторичная группа линий ОКС-7 (secondary)** — выбор второй группы линий ОКС-7 по сигнальным D-каналам, которая будет производить обмен сигнальными сообщениями, относящимися к данной группе линий ОКС-7;

При работе в комбинированном режиме распределение сигнальной нагрузки между первичной и вторичной группой линий ОКС-7 будет равномерное 50/50.

– **Профиль таймеров ОКС-7** — выбор профиля таймеров, который будет использоваться для данной группы линий ОКС-7.

Уровень MTP2

– **Аварийное фазирование при одном сигнальном линке** — включение процедуры аварийного фазирования при включении в работу группы линий ОКС-7, если в данной группе линий ОКС-7 один сигнальный линк;

– **Сервисная информация (SIO)**

– **Идентификатор сети** — указывает на тип сети: международная, федеральная, местная сеть или резерв (обычно на сетях РФ используется значение «Местная сеть»);

Этикетка маршрутизации

– **Собственный код (OPC)** — собственный код пункта сигнализации;

1 В данной версии не поддерживается.
Встречный код ISUP (DPC-ISUP) — код взаимодействующего пункта сигнализации подсистемы ISUP;

Подсистема ISUP

Инициализация — действия устройства при восстановлении потока в работу:

составляют блокировка — каналы остаются заблокированными (BLO);

индивидуальная разблокировка — посылается команда разблокировки для каждого канала (UBL);

групповая разблокировка — посылается группа команд разблокировки каналов (CGU);

групповой сброс — выполняется команда группового сброса каналов (GRS);

REL в ответ на SUS — выдавать сообщение REL в ответ на сообщение заморозки канала SUS;

Отправить цифр набора в IAM при overlap — отправка одной цифры номера в поле «Called Party number» сообщения IAM при методе набора номера overlap;

Отправить в IAM не более 15 цифр — при установленном флаге в сообщении IAM отправляется не более 15 цифр номера CdPN, остальные цифры отправляются в сообщении SAM;

Контроль наличия Redirecting/OrigCalled при входящей переадресации — при установленном флаге вызов будет отбит, если в сообщении IAM присутствует параметр Redirection information, но отсутствуют Redirecting number или Original Called number;

Индикаторы сообщения IAM

Требования к среде передачи — указывает тип информации, доставку которой должна обеспечить среда передачи;

Индикаторы вызова в прямом направлении

Индикатор предпочтительности ISUP– правило изменения индикатора предпочтительности подсистемы ISUP (ISUP preference indicator). В стандартной ситуации данные биты не требуют изменений;

Индикатор взаимодействия — определяет, требуется или нет изменять значение индикатора взаимодействия (определяет, было ли взаимодействие не с ISDN сетью);

Индикатор типа вызова — определяет, требуется или нет изменять значение индикатора типа вызова на international или national;

Индикаторы природы соединения

Индикатор спутникового канала — определяет наличие спутникового канала.

Override to “no satellite” — изменить значение индикатора на “no satellite” независимо от значения, принятого из входящего канала;

Transit — не изменять значение индикатора;

Add one — настройка используется, если звено сигнализации работает через спутниковый канал. В этом случае параметр спутникового канала, передаваемый в индикаторах nature of connection, будет увеличен на 1;

Включить поддержку проверки целостности канала — включает поддержку проверки целостности канала в группе линий ОКС-7. При исходящем вызове вызываемая сторона устанавливает удаленный заворот на потоке, SMG передает в канал частоту, которую после прохождения через канал детектирует на приеме. Если частота задетектирована, то обслуживание вызова продолжается по данному каналу, если нет, то делается аналогичная попытка на следующем канале. В случае трех неуспешных попыток (по трём разным каналам) обслуживание вызова завершается;
− Частота проверок целостности канала – задает частоту проверок целостности канала при исходящих вызовах через группу линий ОКС-7. Например, значение 3 означает, что каждый третий исходящий вызов будет осуществляться с проверкой целостности канала.
− Для шлюза можно задать соответствие категорий ОКС категориям АОН. Данная настройка описана в разделе 4.1.8.1 Категории ОКС.

4.1.7.2.1 Примеры

Пример схемы подключения SMG при работе в квазисвязанном режиме ОКС-7 через сигнальные транзитные пункты (STP).

Задача

Необходимо обеспечить подключение SMG к встречному пункту сигнализации (SP) с помощью двух сигнальных линков. Первый сигнальный линк должен проходить через транзитный пункт сигнализации STP 1, а второй сигнальный линк – через STP 2.

При код: SMG4 = 22, STP 1 = 155, STP 2 = 166, SP = 23.

Решение

Помимо основных настроек задаем в меню «Группы линий ОКС-7» параметр «Собственный код (OPC)» = 22, Встречный код ISUP (DPC-ISUP) = 23.

Допустим, что поток 0 подключен к STP1, а поток 1 к STP 2. В настройках потоков необходимо указать: «Протокол сигнализации» SS7 (ОКС 7), правильно сконфигурировать нумерацию CIC и выбрать необходимый тайм-слот потока Е1 для сигнального D-канала, в настройках «Группа линий ОКС7» выбрать ранее созданную группу линий ОКС-7 и указать параметр «Встречный код MTP3 (DPC-MTP3)» для потока 0 равным 155, для потока 1 – 166.

Пример схемы подключения SMG при работе в квазисвязанном режиме ОКС-7 через АТС с функциями STP.

LS – группа линий ОКС-7 (Link Set).
Задача
Необходимо обеспечить подключение между SMG и двумя ATC с функциями STP (ATC/STP), при выходе из строя основного пучка 1LS между SMG и ATC/STP 1 необходимо отправлять сигнальные сообщения через 2LS.

Решение
Допустим, что поток 0 SMG подключен к ATC/STP 1, на нем сконфигурирована первая группа линий ОКС-7; поток 1 SMG подключен к ATC/STP 2, на нем сконфигурирована вторая группа линий ОКС-7. В настройках потоков необходимо указать: «Протокол сигнализации» – SS7 (ОКС №7), корректно сконфигурировать нумерацию СИС и выбрать необходимый тайм-слот потока E1 для сигнального D-канала, в конфигурации первой группы линий ОКС-7 необходимо в настройке «Резервная группа линий ОКС-7» указать вторую группу линий ОКС-7.

Пример схемы подключения SMG в комбинированном режиме.

Задача
Между SMG и ATC/SP существуют только голосовые каналы, сигнальный трафик необходимо отправлять через ATC/STP 1 и ATC/STP 2.

Решение
Допустим, что поток 0 SMG подключен к ATC/STP 1, на нем сконфигурирована первая группа линий ОКС-7, поток 1 SMG подключен к ATC/STP 2, на нем сконфигурирована вторая группа линий ОКС-7, поток 2 SMG подключен к ATC/SP, на нем сконфигурирована третья группа линий ОКС-7. В настройках потоков необходимо указать: «Протокол сигнализации» SS7 (ОКС №7), правильно сконфигурировать нумерацию СИС и для потоков 0 и 1 выбрать необходимый тайм-слот потока E1 для сигнального D-канала, в конфигурации третьей группы линий ОКС-7 необходимо в настройке «Первичная группа линий ОКС-7 (primary)» указать первую группу линий ОКС-7 и в настройке «Вторичная группа линий ОКС-7 (secondary)» указать вторую группу линий ОКС-7.

4.1.7.3 Интерфейсы SIP/SIP-T/SIP-I

4.1.7.3.1 Конфигурация
В данном разделе настраиваются общие параметры конфигурации стека SIP, индивидуальные настройки для каждого направления, работающего по протоколу SIP/SIP-T/SIP-I, и профили SIP абонентов. Напоминаем, что вызовы VoIP-VoIP не поддерживаются.

Протокол SIP (Session Initiation Protocol) – протокол сигнализации, используемый в IP-телефонии. Обеспечивает выполнение базовых задач управления вызовом, таких как открытие и завершение сеанса. Адресация в сети SIP основана на применении схемы SIP URI:
Цифровой шлюз SMG

sip:user@host:port;uri-parameters
user – номер абонента SIP;
@ – разделитель между номером и доменом абонента SIP;
host – домен, либо IP-адрес абонента SIP;
port – UDP-порт, на котором запущена служба SIP-абонента;
uri-parameters – дополнительные параметры.

Одним из дополнительных параметров SIP URI является параметр user=phone. Если этот параметр присутствует, то синтаксис номера абонента SIP (в части user) должен соответствовать синтаксису TEL URI, описанному в RFC 3966. В этом случае будут обрабатываться запросы, в номере абонента SIP которых будут присутствовать символы "+", ";", ";=", ";?", а также при использовании протокола SIP-T, в случае вызова на международный номер, сама будет добавлять символ "+" перед номером вызываемого абонента.

Общая конфигурация SIP:
– Порт для приема SIP сигнализации – UDP-порт, с которого передаются и на который принимаются сообщения протокола SIP;
– Транспорт – выбор протокола транспортного уровня, используемого для приема и передачи сообщений SIP:
 – TCP-prefer – прием по UDP и TCP. Отправка по TCP. В случае если не удалось установить соединение по TCP, отправка производится по UDP;
 – UDP-prefer – прием по UDP и TCP. Отправка пакетов более 1300 байт по TCP, менее 1300 байт – по UDP;
 – UDP-only – использовать только UDP протокол;
 – TCP-only – использовать только TCP протокол;
– Таймер T1 – время ожидания ответа на запрос, по истечении которого запрос будет отправлен повторно. Максимальный интервал ретрансляции для запросов INVITE равен 64*Т1;
– Таймер T2 – максимальный интервал ретрансляции для ответов на INVITE запросы и всех запросов за исключением INVITE;
– Таймер T4 – максимальное время, отведенное на все ретрансляции окончательного ответа;
– Игнорировать адрес в R-URI – анализировать только user часть в Request URI.

Максимально возможно создать до 64 интерфейсов. Для создания, редактирования и удаления интерфейсов SIP/SIP-T используется меню «Объекты» – «Добавить объект», «Объекты» – «Редактировать объект» и «Объекты» – «Удалить объект», а так же кнопки:
Сигнальный процессор шлюза выполняет функции кодирования аналогового речевого трафика, данных факса/модема в цифровые сигналы, а также обратного декодирования. Шлюз поддерживает следующие кодеки: G.711A, G.711U, G.729, протокол Т.38 и режим CLEARMODE.

G.726 — является стандартом ITU-T адаптивной импульсно-кодовой модуляции — ADPCM и описывает передачу голоса полосой в 16, 24, 32, и 40 килобит/сек. **G.726-32** замещает собой G.721, который описывает ADPCM передачу голоса полосой в 32 килобит/сек.

G.723.1 — кодек со сжатием речевой информации, предусматривает два режима работы: 6.3 Кбит/с и 5.3 Кбит/с. Кодек G.723.1 имеет детектор речевой активности и обеспечивает генерацию комфортного шума на удаленном конце в период молчания (Annex A).

G.729 — также является кодеком со сжатием речевой информации и обеспечивает скорость передачи 8 Кбит/с. Аналогично кодеку G.723.1, кодек G.729 поддерживает детектор речевой активности и обеспечивает генерацию комфортного шума (Annex B).

T.38 — стандарт, описывающий передачу факсимильных сообщений в реальном времени через IP сети. Сигналы и данные, передаваемые факсимильным аппаратом, кодируются в пакеты протокола T.38. В формируемые пакеты может вводиться избыточность — данные из предыдущих пакетов, что позволяет осуществить надежную передачу факса по нестабильным каналам.

CLEARMODE — режим, в котором не используется кодирование/декодирование сигнала. Организуется для прозрачной передачи цифровой информации 64кбит/с (RFC4040).

Значения поля «тип сервиса» (IP DSCP) для RTP, T.38 и SIP/SIP-T/SIP-I:
- 0 (DSCP 0x00, Diffserv 0x00) — лучшая попытка (Best effort) — значение по умолчанию;
- 8 (DSCP 0x08, Diffserv 0x20) — класс 1;
- 10 (DSCP 0x0A, Diffserv 0x28) — гарантированное отправление, низкая вероятность сброса (Class1, AF11);
- 12 (DSCP 0x0C, Diffserv 0x30) — гарантированное отправление, средняя вероятность сброса (Class1, AF12);
- 14 (DSCP 0x0E, Diffserv 0x38) — гарантированное отправление, высокая вероятность сброса (Class1, AF13);
- 16 (DSCP 0x10, Diffserv 0x40) — класс 2;
- 18 (DSCP 0x12, Diffserv 0x48) — гарантированное отправление, низкая вероятность сброса (Class2, AF21);
- 20 (DSCP 0x14, Diffserv 0x50) — гарантированное отправление, средняя вероятность сброса (Class2, AF22);
- 22 (DSCP 0x16, Diffserv 0x58) — гарантированное отправление, высокая вероятность сброса (Class2, AF23);
- 24 (DSCP 0x18, Diffserv 0x60) — класс 3;
- 26 (DSCP 0x1A, Diffserv 0x68) — гарантированное отправление, низкая вероятность сброса (Class3, AF31);
- 28 (DSCP 0x1C, Diffserv 0x70) — гарантированное отправление, средняя вероятность сброса (Class3, AF32);
- 30 (DSCP 0x1E, Diffserv 0x78) — гарантированное отправление, высокая вероятность сброса (Class3, AF33);
- 32 (DSCP 0x20, Diffserv 0x80) — класс 4;
- 34 (DSCP 0x22, Diffserv 0x88) — гарантированное отправление, низкая вероятность сброса (Class4, AF41);
Цифровой шлюз SMG

36 (DSCP 0x24, Diffserv 0x90) – гарантированное отправление, средняя вероятность сброса (Class4, AF42);
38 (DSCP 0x26, Diffserv 0x98) – гарантированное отправление, высокая вероятность сброса (Class4, AF43);
40 (DSCP 0x28, Diffserv 0xA0) – класс 5;
46 (DSCP 0x2E, Diffserv 0xB8) – ускоренное отправление (Class5, Expedited Forwarding).

IP Precedence:
0 – IPP0 (Routine);
8 – IPP1 (Priority);
16 – IPP2 (Immediate);
24 – IPP3 (Flash);
32 – IPP4 (Flash Override);
40 – IPP5 (Critical);
48 – IPP6 (Internet Control);
56 – IPP7 (Network Control).

4.1.7.4 Вкладка Настройка интерфейса SIP

– Название – наименование интерфейса;
– Режим – выбор протокола для интерфейса (SIP/SIP-T/SIP-I, Транзит E1);
– Транковая группа – наименование транковой группы, в которую входит интерфейс;
– Категория доступа – выбор категории доступа;
– План нумерации – определяет план нумерации, в котором будет осуществляться набор с данного порта (это необходимо для согласования планов нумерации);
– Имя хоста / IP-адрес – IP-адрес либо имя хоста, взаимодействующего по протоколу SIP/SIP-T шлюза;
– Порт назначения SIP сигнализации¹ – UDP/TCP-порт взаимодействующего шлюза, на котором он принимает сигнализацию SIP/SIP-T шлюза;
– Порт для приема SIP сигнализации² – локальный UDP/TCP-порт устройства, на котором он принимает сигнализацию SIP/SIP-T от взаимодействующего через данный интерфейс устройства;

¹ Поле неактивно в режиме SIP-профиль
Цифровой шлюз SMG

- **Публичный IP-адрес** - IP-адрес, который будет использоваться для подстановки в исходящие сообщения SIP/SDP. Помогает обеспечивать корректную работу устройства за NAT.
- **Не учитывать порт-источник при входящих вызовах** - при установленном флаге не производится проверка используемого для передачи сигнализации UDP-порта взаимодействующего шлюза, указанного в настройке «порт для приема SIP сигнализации», иначе – производится, и в случае приема запроса INVITE с другого порта вызов отбивается. Если запрос INVITE принят по протоколу TCP, то проверка порта не производится независимо от значения настройки;
- **Доверенная сеть** - означает, что интерфейс присоединен к доверенной сети (trusted). Данная опция определяет формирование полей запроса INVITE при вызове со скрытым номером вызывающего абонента (presentation restricted). При установленном флаге информация о номере вызывающего абонента передается в полях from и P-Asserted-identity совместно с информацией о том, что номер скрыт, в поле Privacy: id, иначе – информация о номере вызывающего абонента не передается ни в одном поле;
- **Индикация аварии** - при установленном флаге SMG будет сигнализировать аварию в случае потери связи со встречным устройством. Для корректной работы данной опции необходимо поставить флаг «Контроль доступности встречной стороны сообщениями OPTIONS» в настройках протокола SIP;
- **Сетевой интерфейс сигнализации** - выбор сетевого интерфейса для приема и передачи сигнальных SIP сообщений;
- **Сетевой интерфейс для RTP** - выбор сетевого интерфейса для приема и передачи голосового трафика;
- **Таблица соответствия Q.850-cause и SIP-reply** - выбор таблицы соответствия между причинами отбоя Q.850-cause и кодами ответов SIP-reply. Настройка таблиц соответствия производится в меню «Внутренние ресурсы»;
- **Профиль маршрутизации по расписанию** - выбор профиля услуги «маршрутизация по расписанию», которая конфигурируется в разделе «Внутренние ресурсы»;
- **Активных соединений** - максимальное количество одновременных (входящих и исходящих) соединений через данный интерфейс.

Настройка опций для режима работы "Транзит E1"

В этом режиме не используются некоторые опции. Такие поля скрываются и недоступны для настройки при выборе режима. Оставшиеся поля настраиваются аналогично режимам SIP/SIP-T/-SIP-I.
Настройка опций для протоколов SIP/SIP-T/SIP-I

- **Контроль доступности встречной стороны сообщениями OPTIONS** — функция контроля доступности направления посредством запросов OPTIONS, при недоступности направления вызов будет осуществлен через резервную транковую группу. Функция также анализирует полученный ответ на запрос OPTIONS, что позволяет не использовать настроенные в данном направлении возможности 100rel, replaces и timer, если встречная сторона их не поддерживает. Параметр определяет период передачи запросов и принимает значения из диапазона 30-3600 с;
- **Всегда передавать SDP в предварительных ответах** — позволяет осуществить раннее проключение голосового тракта. Например, если флаг снят, то SMG отправляет ответ 180 без описания сессии SDP, и по данному ответу исходящая сторона проигрывает КПВ, при установленном флаге SMG отправляет ответ 180 с описанием сессии SDP, и КПВ проигрывается входящей стороной;
- **'In-band signal' с передачей 183+SDP** — выдавать SIP ответ 183 с описанием сессии SDP для проключения голосового тракта при получении из ISDN PRI сообщений CALL PROCEEDING или PROGRESS, содержащих progress indicator=8 (In-band signal);
— Разрешить переадресацию (302) — при установленном флаге шлюз разрешено осуществлять переадресацию после приема с данного интерфейса ответа 302. При снятом флаге при приеме ответа 302 шлюз отклонит вызов и не выполнит переадресацию;
— Сервер переадресации — опция доступна при разрешенной обработке ответа 302 (параметр «Разрешить переадресацию (302)»). Позволяет перенаправить вызов, отправленный по публичному адресу на частный адрес абонента, принятый в ответе 302, не используя маршрутизацию по плану нумерации. Маршрутизация осуществляется непосредственно на адрес из заголовка contact ответа 302, принятого от сервера переадресации;
— Разрешить обработку сообщений REFER — запрос REFER передается взаимодействующим шлюзом для выполнения услуги «Передача вызова». При установленном флаге шлюз разрешено обрабатывать запросы REFER, принятые с данного интерфейса. При снятом флаге, приняв запрос REFER, шлюз отклонит вызов и не выполнит услугу «Передача вызова»;
— Надежная доставка предварительных ответов (1xx) — при установленном флаге запрос INVITE и предварительные ответы класса 1xx будут содержать опцию require: 100rel, требующую гарантированного подтверждения предварительных ответов;
 - off — опция надежной доставки предварительных ответов отключена;
 - support — запрос INVITE и предварительные ответы класса 1xx будут содержать опцию support: 100rel;
 - require — запрос INVITE и предварительные ответы класса 1xx будут содержать опцию require: 100rel, требующую гарантированного подтверждения предварительных ответов;

Протоколом SIP определено два типа ответов на запрос, инициирующий соединение (INVITE) — предварительные и окончательные. Ответы класса 2xx, 3xx, 4xx, 5xx и 6xx являются окончательными и передаются надежно — с подтверждением их сообщением ACK. Ответы класса 1xx, за исключением ответа 100 Trying, являются предварительными и передаются ненадежно — без подтверждения (rfc3261). Эти ответы содержат информацию о текущей стадии обработки запроса INVITE, а в протоколе SIP-T/SIP-I в ответы класса 1xx инкапсулируются сообщения OKC-7, вследствие чего потеря этих ответов нежелательна. Использование надежных предварительных ответов также предусмотрено протоколом SIP (rfc3262) и определяется наличием тега 100rel в инициирующем запросе, в этом случае предварительные ответы подтверждаются сообщением PRACK.

— DSCP для Signalling — тип сервиса (DSCP) для сигнального трафика (SIP);

Настройки DSCP для RTP и DSCP для SIP будут игнорироваться при использовании VLAN для передачи RTP и сигнализации. Для приоритезации трафика в данном случае будут использоваться Class of Service VLAN.

— Remote name в заголовке contact - вставлять в заголовок Contact отображаемое имя.

Таймеры SIP-сессий (RFC 4028):

— Включить поддержку таймеров — при установленном флаге поддерживаются таймеры SIP-сессий (RFC 4028). Обновление сессии поддерживается путем передачи запросов re-INVITE в течение сессии,
— Запрашиваемый период контроля сессии (Session Expires) — период времени в секундах, по истечении которого принудительное завершение сессии, в случае если сессия не будет во время обновлена (от 90 до 64800 c, рекомендуемое значение – 1800 с);
— Минимальный период контроля сессии (Min SE) — минимальный интервал проверки работоспособности соединения (от 90 до 32000 c). Данное значение не должно превышать таймаут принудительного завершения сессии Sessions expires;
— Сторона обновления сессии — определяет сторону, которая будет осуществлять обновление сессии (клиент (uac) – сторона клиента (вызывающая), сервер (uas) – сторона сервера (вызываемая)).
Параметры регистрации:

- Регистрация на вышестоящем сервере – выбор типа регистрации на вышестоящем сервере:
 - Транковая регистрация – регистрация на вышестоящем сервере с указанными в данном разделе параметрами;
 - Логин – имя, используемое для аутентификации;
 - Пароль – пароль, используемый для аутентификации;
 - Имя пользователя/Номер – номер пользователя, используемый в качестве номера вызывающего абонента при совершении исходящих транковых вызовов;
 - SIP-домен – SIP-домен, который будет использован для регистрации и последующих звонков с этого интерфейса;
 - Режим маршрутизации – выбор режима, по которому будет производиться маршрутизация входящего вызова при использовании транковой регистрации:
 - по RURI – маршрутизация по request-URI сообщения INVITE;
 - по полю TO – маршрутизация по полю TO сообщения INVITE;
 - по CdPN по умолчанию – маршрутизация по заданному номеру CdPN независимо от номеров, полученных в сообщении INVITE;
 - CdPN по умолчанию – номер CdPN, по которому будет происходить маршрутизация вызова в случае использования режима «по CdPN по умолчанию»;
 - Подмена CgPN при исходящем вызове – при установленном флаге номер вызывающего абонента (CgPN) берется из параметра «Имя пользователя/Номер», иначе – используется номер CgPN, принятый во входящем вызове;
 - Период регистрации – период времени для осуществления перерегистрации;
 - Интервал запросов регистрации (мс) – минимальный интервал между отправками сообщений Register, необходимый для защиты от интенсивного трафика, вызванного одновременной регистрацией большого количества абонентов.

Параметры STUN-сервера:

- Использовать STUN – установка флага включает отправку запросов на STUN-сервер;
- IP STUN-сервера – IP-адрес сервера STUN;
- Порт STUN-сервера – порт сервера STUN.

Настройка опций для режима работы "Транзит E1"

В этом режиме не используются некоторые опции. Такие поля скрываются и недоступны для настройки при выборе режима. Оставшиеся поля настраиваются аналогично режимам SIP/SIP-T/-SIP-I.

2 Блок параметров доступен только для режима SIP
В режиме работы "Транзит E1" включаются опции таймеров SIP-сессий (RFC4028) со значениями по умолчанию, если другие значения не были установлены ранее.

4.1.7.6 Вкладка Настройка кодеков RTP

<table>
<thead>
<tr>
<th>Опции:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Детектор активности речи / Генератор комфортного шума (VAD/CNG)</td>
<td>при установленном флаге детектор тишины и генератор комфортного шума включены. Детектор активности речи позволяет отключать передачу разговорных пакетов RTP в моменты молчания, тем самым уменьшая нагрузку в сети передачи данных;</td>
</tr>
<tr>
<td>Контроль IP:Port источника RTP</td>
<td>при установленной настройке контролируется поступление медиатрафика с IP-адреса и UDP-порта указанных в описании сеанса связи SDP, иначе принимается трафик с любого IP-адреса и UDP-порта;</td>
</tr>
<tr>
<td>Эхокомпенсация</td>
<td>режим эхокомпенсации:</td>
</tr>
<tr>
<td>voice(default)</td>
<td>эхокомпенсаторы включены в режиме передачи голосовой информации;</td>
</tr>
<tr>
<td>voice nlp-off</td>
<td>эхокомпенсаторы включены в голосовом режиме, нелинейный процессор NLP выключен. В случае, когда уровни сигналов на передаче и приеме сильно различаются, слабый сигнал может быть подавлен нелинейным процессором NLP. Для предотвращения подавления используется данный режим работы эхокомпенсаторов;</td>
</tr>
<tr>
<td>modem</td>
<td>эхокомпенсаторы включены в режиме работы модема (фильтрация постоянной составляющей сигнала выключена, контроль процессором NLP выключен, генератор комфортного шума выключен);</td>
</tr>
<tr>
<td>off</td>
<td>не использовать эхокомпенсацию (даннный режим установлен по умолчанию);</td>
</tr>
</tbody>
</table>
– Усиление сигнала на приеме (0.1 dB) – громкость принимаемого сигнала, усиление/ослабление уровня сигнала, принятого от взаимодействующего шлюза;
– Усиление сигнала на передаче (0.1 dB) – громкость передаваемого сигнала, усиление/ослабление уровня сигнала, передаваемого в сторону взаимодействующего шлюза;
– DSCP для RTP – тип сервиса (DSCP) для RTP и UDPTL (T.38) пакетов;
– Таймаут ожидания RTP-пакетов – функция контроля состояния разговорного тракта по наличию RTP-трафика от взаимодействующего устройства. Диапазон допустимых значений от 10 до 300 секунд. При снятом флаге контроль RTP выключен, при установленном – включен. Контроль осуществляется следующим образом: если в течение данного таймаута от встречного устройства не поступает ни одного RTP пакета и последний пакет не был пакетом подавления пауз, то вызов отключается;
– Таймаут ожидания RTP-пакетов после получения Silence-Suppression (множитель) – таймаут ожидания RTP-пакетов при использовании опции подавления пауз. Диапазон допустимых значений от 1 до 30. Коэффициент является множителем и определяет, во сколько раз значение данного таймаута больше, чем «Таймаут ожидания RTP-пакетов». Контроль осуществляется следующим образом: если в течение данного времени от встречного устройства не поступает ни одного RTP пакета и последний пакет был пакетом подавления пауз, то вызов отключается;
– Период передачи пакетов RTCP (c) – период времени в секундах (5-65535 c.), через который устройство отправляет контрольные пакеты по протоколу RTCP. При отсутствии установленного флага протокол RTCP не используется;
– Контроль активности сессии по протоколу RTCP – функция контроля состояния разговорного тракта, принимает значения из диапазона 5-65535 c. Количество интервалов времени (RTCP timer), в течение которого ожидают пакеты протокола RTCP со встречной стороны. При отсутствии пакетов в заданном периоде времени установленное соединение разрушается. При этом в сторону TDM и IP-протоколов устанавливается причина разъединения – «cause 3 no route to destination». Значение контрольного периода определяется по формуле: RTCP timer* RTCP control period секунд. При отсутствии установленного флага функция выключена;
– Clear Channel – канал, организованный для прозрачной передачи цифровых данных, при организации такого канала устройство не пытается его перекодировать, а передает прозрачно. Для организации такого соединения необходимо получение поля «Transmission Medium Requirement» со значениями:
 – restricted digital info (протокол Q.931);
 – unrestricted dig.info (протокол Q.931);
 – video (протокол Q.931);
 – 64 kbit/s unrestricted (протокол ОКС-7);
– Clear Channel override – при установленном флаге при организации clear channel в SDP будет указан только один кодек CLEARMODE, если на первом плече вызова была запрошена работа по Clear Channel. Если флаг не установлен, то в SDP всегда будет передаваться весь список выбранных кодеков в порядке приоритета.

Передача DTMF:
 – Способ передачи DTMF – способ передачи DTMF через IP-сеть;
 – inband – в пакетах протокола RTP, внутриполосно;
 – rfc2833 – в пакетах протокола RTP, согласно рекомендации rfc2833;
 – info – внеполосно. По протоколу SIP используются сообщения INFO, при этом вид передаваемых сигналов DTMF будет зависеть от типа расширения MIME;

Для возможности использования донабора во время разговора убедитесь, что аналогичный метод передачи сигналов DTMF настроен на встречном шлюзе!
- Обработка сигнала Flash (RFC2833) – обработки сигнала FLASH, принято по методом RFC2833;
- RFC2833 PT – тип динамической нагрузки, используемой для передачи пакетов DTMF по RFC2833. Разрешенные для использования значения – от 96 до 127. Рекомендация RFC2833 определяет передачу сигналов DTMF посредством RTP-протокола. Данный параметр должен согласовываться с аналогичным параметром взаимодействующего шлюза (наиболее часто используемые значения: 96, 101);
- Одноканальный RFC2833 PT – при установленном флаге в случае, когда SMG является стороной, отправившей offer SDP, на прием ожидался пакеты RFC2833 со значением PT, отправленным нам в answer SDP, иначе – на прием ожидается пакеты RFC2833 с тем значением PT, которое SMG отправило в offer SDP;
- DTMF MIME Type – тип нагрузки, используемый для передачи DTMF в пакетах INFO протокола SIP:
 - application/dtmf-relay – в пакетах INFO application/dtmf-relay протокола SIP (* и # передаются как символы * и #);
 - application/dtmf – в пакетах INFO application/dtmf протокола SIP (* и # передаются как числа 10 и 11);
- Параметры jitter-буфера:
 - Режим – режим работы джиттер-буфера: фиксированный либо адаптивный;
 - Минимальный размер, мс – размер фиксированного джиттер-буфера либо нижняя граница (минимальный размер) адаптивного джиттер-буфера. Диапазон допустимых значений от 0 до 200 мс;
 - Начальный размер, мс – начальное значение адаптивного джиттер - буфера. Диапазон допустимых значений от 0 до 200 мс;
 - Максимальный размер, мс – верхняя граница (максимальный размер) адаптивного джиттер-буфера в миллисекундах. Диапазон допустимых значений от «минимального размера» до 200 мс;
 - Период адаптации, мс – время адаптации буфера к нижней границе при отсутствии нарушений в порядке следования пакетов;
 - Режим удаления – режим адаптации буфера. Определяет, каким образом будут удаляться пакеты при адаптации буфера к нижней границе:
 - Soft – используется интеллектуальная схема выбора пакетов для удаления, превышших порог;
 - Hard – пакеты, задержка которых превысила порог, немедленно удаляются;
 - Порог удаления, мс – порог немедленного удаления пакетов в миллисекундах. При росте буфера и превышении задержки пакета свыше данной границы, пакеты немедленно удаляются. Диапазон допустимых значений от Delay max до 500 мс;
 - Режим подстройки – выбор режима подстройки адаптивного джиттер-буфера при его увеличении (плавный/моментальный);
 - Размер для VBD, мс – размер фиксированного джиттер-буфера, используемого при передаче данных в режиме VBD (модемной связи). Диапазон допустимых значений от 0 до 200 мс;

Настройка опций для режима работы “Транзит E1”

В этом режиме не используются некоторые опции. Такие поля скрываются и недоступны для настройки при выборе режима. Оставшиеся поля настраиваются аналогично режимам SIP/SIP-T/-SIP-I.
4.1.7.7 Вкладка Настройка факса и передача данных

Передача данных

- **Использовать VBD** — при установленном флаге создать канал VBD согласно рекомендации V.152 для передачи модема. При детектировании сигнала CED осуществляется переход в режим *Voice band data*. Снятие флага отключает детектирование тонов модема, но не запрещает передачу модема (не будет инициироваться переход на кодек модема, но данный переход может быть осуществлен встречным шлюзом);
- **Кодек VBD** — кодек, используемый для передачи данных в режиме VBD;
Цифровой шлюз SMG

Тип нагрузки VBD – тип нагрузки, используемый для передачи данных в режиме VBD:
- Static – использовать стандартное значение типа нагрузки для кодека (для кодека G.711A – тип нагрузки 8, для кодека G.711U – тип нагрузки 0);
- 96-127 – типы нагрузки из динамического диапазона.

Предача факса

Режим детектирования – определяет направление передачи, при котором детектируются тоны факса, после чего осуществляется переход на кодек факса:
- no detect fax – отключает детектирование тонов факса, но не запрещает переходу факса (не будет инициироваться переход на кодек факса, но данный переход может быть сделан встречным шлюзом);
- Caller and Callee – детектируются тоны как при передаче факса, так и при приеме. При передаче факса детектируется сигнал CNG FAX с абонентской линии. При приеме факса детектируется сигнал V.21 с абонентской линии;
- Caller – детектируются тоны только при передаче факса. При передаче факса детектируется сигнал CNG FAX с абонентской линии;
- Callee – детектируются тоны только при приеме факса. При приеме факса детектируется сигнал V.21 с абонентской линии;

Сигнал V.21 может быть задетектирован и от передающего факса.

Режим передачи – выбор протокола для передачи факса;
Максимальная скорость факса, передаваемого по протоколу T.38 – максимальная скорость факса, передаваемого по протоколу T.38. Данная настройка влияет на возможности шлюза работать с высокоскоростными факсимильными аппаратами. Если факсимильные аппараты поддерживают передачу на скорости 14400, а на шлюзе настроено ограничение 9600, то максимальная скорость соединения между факсимильными аппаратами не сможет превысить 9600 бод. Если наоборот, факсимильные аппараты поддерживают передачу на скорости 9600, а на шлюзе настроено ограничение 14400, то данная настройка не окажет влияние на взаимодействие, максимальная скорость будет определяться возможностями факсимильных аппаратов;
Метод управления скоростью передачи данных по протоколу T.38 – установить метод управления скоростью передачи данных:
- local TCF – метод требует, чтобы подстроенный сигнал TCF генерировался приемным шлюзом локально. Обычно используется при передаче T.38 по TCP;
- transferred TCF – метод требует, чтобы подстроенный сигнал TCF передавался с передающего устройства на приемное. Обычно используется при передаче T.38 по UDP;
Удаления и вставки битов заполнения для данных T.38 – удаления и вставки битов заполнения для данных, не связанных с ECM (режимом коррекции ошибок);
Величина избыточности в пакетах данных T.38 – величина избыточности в пакетах данных T.38 (количество предыдущих пакетов в последующем пакете T.38). Введение избыточности позволяет восстановить переданную последовательность данных на приеме в случае, если были потери среди переданных пакетов;
Время пакетизации для протокола T.38 – определяет частоту формирования пакетов T.38 в миллисекундах (мс). Данная настройка позволяет регулировать размер передаваемого пакета. Если взаимодействующий шлюз может принимать дейтаграммы с максимальным размером в 72 байта (maxdatagrammSize: 72), то на SMG время пакетизации необходимо установить минимальным;
Транзит пакетов T.38 – в случае, когда вызов осуществляется через два SIP-интерфейса и протокол T.38 для передачи факса используется в обоих интерфейсах, данная настройка позволяет осуществить транзит пакетов T.38 из одного интерфейса в другой с минимальными задержками.
Настройка опций для режима работы "Транзит Е1"

В этом режиме не используются опции детектирования модема и факса. Вкладка недоступна при выборе режима.

4.1.7.8 Транковые направления

Транковое направление представляет собой набор транковых групп, объединенных в общее направление. При звонке на транковое направление можно задать порядок выбора транковых групп, входящих в направление.

Для создания, редактирования и удаления транковых направлений используется меню «Объекты» – «Добавить объект», «Объекты» – «Редактировать объект» и «Объекты» – «Удалить объект», а также кнопки:

– «Добавить направление»;
– «Редактировать параметры направления»;
– «Удалить направление».

Для доступа к транковому направлению в конфигурации устройства должны присутствовать префиксы, осуществляющие выход на данное направление.

– Имя – наименование транкового направления;
– Режим выбора транк группы в списке – порядок выбора транковой группы в направлении:
 – Последовательно вперед – выбираются по очереди все транковые группы, входящие в состав направления, начиная с первой в списке;
 – Последовательно назад – выбираются по очереди все транковые группы, входящие в состав направления, начиная с последней в списке;
 – Начиная с первого вперед – выбирается первая свободная транковая группа, входящая в состав направления, начиная с первой в списке;
 – Начиная с последнего назад – выбирается первая свободная транковая группа, входящая в состав направления, начиная с последней в списке.

Список транковых групп в направлении:
Для добавления и удаления транковых групп используются кнопки:

- «Добавить»;
- «Удалить».

Для изменения порядка транковых групп в списке используются стрелки (вниз, вверх).

4.1.8 Внутренние ресурсы

4.1.8.1 Категории ОКС

В данном разделе указывается соответствие категорий АОН и категорий протокола ОКС-7.

Общепринятое соответствие категорий ОКС-7 категориям АОН абонента приведено ниже:

категория ОКС7 10 — категория АОН 1
категория ОКС7 11 — категория АОН 4
категория ОКС7 12 — категория АОН 8
категория ОКС7 15 — категория АОН 6
категория ОКС7 224 — категория АОН 0
категория ОКС7 225 — категория АОН 2
категория ОКС7 226 — категория АОН 5
категория ОКС7 227 — категория АОН 7
категория ОКС7 228 — категория АОН 3
категория ОКС7 229 — категория АОН 9

4.1.8.2 Категории доступа

Категории доступа используются для определения прав доступа абонентов, транковых групп и других объектов друг к другу. Категории определяют возможность осуществления вызова из входящего канала в исходящий.

Если требуется ограничить доступ к какому-либо объекту, следует назначить ему соответствующую категорию; для других категорий – определить в данном меню доступность к категории, назначенной на объект (убрать доступ – снять флаг напротив соответствующей категории, добавить доступ – установить флаг напротив соответствующей категории).

Всего для настройки доступно 64 категории доступа. На каждой из них по умолчанию прописано
разрешение доступа к первым 16-ти категориям.

Переход к настройке и редактированию выбранной категории осуществляется кнопкой.

4.1.8.3 Таблицы модификаторов

В данной таблице отображаются все созданные модификаторы и видно каким объектам они присвоены.

Для создания, редактирования и удаления модификатора используется меню «Объекты» – «Добавить объект», «Объекты» – «Редактировать объект» и «Объекты» – «Удалить объект», а также кнопки:

- «Добавить модификатор»;
- «Редактировать параметры модификатора»;
- «Удалить модификатор».

Для назначения/редактирования параметров созданного модификатора необходимо выделить соответствующую строку и нажать кнопку.

Для того чтобы подтвердить изменение параметров модификатора, необходимо нажать кнопку «Задать», для выхода без сохранения изменений – кнопку «Отмена».

Вкладка Отбор номера

- **Маска номера** – шаблон или набор шаблонов, с которым сравнивается номер абонента (синтаксис маски описан в разделе 4.1.6.1);
- **Тип номера** – тип номера абонента:
 - **Subscriber** – абонентский номер (SN) в формате E.164;
 - **National** – национальный номер. Формат номера: NDC + SN, где NDC – код географической зоны;
 - **International** – международный номер. Формат номера: CC + NDC + SN, где CC – код страны;
 - **Network specific** – специальный номер сети;
 - **Unknown** – неопределенный тип номера;
 - **Любой** – модификация будет произведена над номером с любым типом;
 - **Категория АОН** – категория АОН абонента;
Вкладка Модификация общая

− Пример модификации – по нажатию на кнопку осуществляется просмотр итоговых результатов модификации после применения заданных правил модификации.
− Категория доступа – позволяет модифицировать категорию доступа;
− План нумерации – позволяет изменить план нумерации, в котором будет осуществляться дальнейшая маршрутизация (это необходимо для согласования планов нумерации);

Вкладка Модификация CdPN/Original CdPN

− Пример модификации – по нажатию на кнопку осуществляется просмотр итоговых результатов модификации после применения заданных правил модификации. Вместо номера 123456789, введенного в примере для проверки правил, рекомендуется задавать номер, над которым планируется осуществить модификацию.
− Правило модификации для CdPN/Original CdPN – правило преобразования номера вызываемого абонента. Используемый синтаксис описан в разделе 4.1.8.3.1, примеры использования в Приложении В, данное правило так же применяется для модификации исходного номера вызываемого абонента (original Called party number), в случае если данная таблица модификаторов выбрана в разделе «транк группы» для модификации Original CdPN;
− Тип номера Called – правило преобразования типа номера вызываемого абонента (no change – не преобразовывать);
− Тип плана нумерации – правило преобразования типа плана нумерации (no change – не преобразовывать);
Вкладка Модификация CgPN/RedirPN

- Пример модификации — по нажатию на кнопку осуществляется просмотр итоговых результатов модификации после применения заданных правил модификации. Вместо номера 123456789, введенного в примере для проверки правил, рекомендуется задавать номер, над которым планируется осуществить модификацию.
- Правило модификации для CgPN/Redir PN — правило преобразования номера вызываемого абонента. Используемый синтаксис описан в разделе 4.1.8.3.1, примеры использования в Приложении В, это правило также применяется для модификации переадресующего номера (redirecting number), в случае если данная таблица модификаторов выбрана в разделе «транк группы» для модификации Redir PN;
- Tun номера Calling — правило преобразования типа номера вызывающего абонента (no change – не преобразовывать);
- Calling presentation — правило преобразования представления вызывающего абонента (no change – не преобразовывать);
- Calling screen — правило преобразования индикатора экранирования вызывающего абонента (no change – не преобразовывать);
- Категория AOH — правило преобразования категории вызывающего абонента (no change – не преобразовывать);
- Tun плана нумерации — правило преобразования типа плана нумерации (no change – не преобразовывать).

4.1.8.3.1 Синтаксис правила модификации

Правило модификации представляет собой набор спецсимволов, определяющих изменения номера:
- `'.' и '-': спецсимволы, обозначающие, что цифра на данной позиции номера удаляется, и на ее место смешаются цифры, следующие далее;
- `'X', 'x': спецсимволы, обозначающие, что цифра на данной позиции остается неизменной (обязательное наличие цифры на этой позиции)
- '?': спецсимвол, обозначающий, что цифра на данной позиции остается неизменной (необязательное наличие цифры на этой позиции)
- '+': спецсимвол, означающий, что все знаки, находящиеся между этой позицией и следующим спецсимволом (или концом последовательности), вставляются в номер на заданное место;
– '!' спецсимвол, означающий окончание разбора, все дальнейшие цифры номера отрезаются;
– '№': спецсимвол, означающий окончание разбора, все дальнейшие цифры номера используются неизменными;
– 0-9, # и * (не имеющие перед собою спецсимвола '+'): информационные символы, которые замещают цифру в номере на данной позиции.

4.1.8.4 Таймеры Q.931

В данном разделе настраиваются таймеры третьего уровня, необходимые для работы протокола сигнализации Q.931.

Наименование таймеров и значения по умолчанию описаны в рекомендации ITU-T Q.931 §9 List of system parameters.

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Значение по умолчанию, сек</th>
<th>Диапазон, сек</th>
</tr>
</thead>
<tbody>
<tr>
<td>T301</td>
<td>180</td>
<td>180 – 360</td>
</tr>
<tr>
<td>T302</td>
<td>15</td>
<td>10 – 25</td>
</tr>
<tr>
<td>T303</td>
<td>4</td>
<td>4 – 10</td>
</tr>
<tr>
<td>T304</td>
<td>20</td>
<td>20 – 30</td>
</tr>
<tr>
<td>T305</td>
<td>30</td>
<td>30 – 40</td>
</tr>
<tr>
<td>T306</td>
<td>30</td>
<td>30 – 40</td>
</tr>
<tr>
<td>T307</td>
<td>180</td>
<td>180 – 240</td>
</tr>
<tr>
<td>T308</td>
<td>4</td>
<td>4 – 10</td>
</tr>
<tr>
<td>T309</td>
<td>90</td>
<td>6 – 90</td>
</tr>
<tr>
<td>T310</td>
<td>10</td>
<td>10 – 20</td>
</tr>
<tr>
<td>T312</td>
<td>6</td>
<td>6 – 12</td>
</tr>
<tr>
<td>T313</td>
<td>4</td>
<td>4 – 10</td>
</tr>
<tr>
<td>T314</td>
<td>4</td>
<td>4 – 10</td>
</tr>
<tr>
<td>T316</td>
<td>120</td>
<td>120 – 240</td>
</tr>
<tr>
<td>T317</td>
<td>120</td>
<td>120 – 240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Не меньше T316</td>
</tr>
<tr>
<td>T320</td>
<td>30</td>
<td>30 – 60</td>
</tr>
<tr>
<td>T321</td>
<td>30</td>
<td>30 – 60</td>
</tr>
<tr>
<td>T322</td>
<td>4</td>
<td>4 – 10</td>
</tr>
</tbody>
</table>

4.1.8.5 Таймеры ОКС-7

В данном разделе настраиваются таймеры уровней MTP2, MTP3 и ISUP протокола ОКС-7.

Для создания, редактирования и удаления профиля используются кнопки:

- «Добавить профиль»;
- «Редактировать параметры профиля»;
- «Удалить профиль».
Цифровой шлюз SMG

- **№** – порядковый номер профиля таймеров ОКС-7;
- **Профиль** – название профиля;
- **Группа линий ОКС-7** – список групп линий ОКС-7, у которых выбран данный профиль.

Настройки профиля:

Наименование таймеров уровня MTP2 и значения по умолчанию описаны в рекомендации ITU-T Q.703 §12.3 Timers.

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Значение по умолчанию, сек</th>
<th>Диапазон, сек</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>50</td>
<td>40 – 50</td>
</tr>
<tr>
<td>T2</td>
<td>50</td>
<td>5 – 150</td>
</tr>
<tr>
<td>T3</td>
<td>2</td>
<td>1 – 2</td>
</tr>
<tr>
<td>T4n</td>
<td>8.2</td>
<td>7.5 – 9.5</td>
</tr>
<tr>
<td>T4e</td>
<td>0.5</td>
<td>0.4 – 0.6</td>
</tr>
<tr>
<td>T6</td>
<td>6</td>
<td>3 – 6</td>
</tr>
<tr>
<td>T7n</td>
<td>2</td>
<td>0.5 – 2</td>
</tr>
</tbody>
</table>

Наименование таймеров уровня MTP3 и значения по умолчанию описаны в рекомендации ITU-T Q.704 §16.8 Timers and timer values.

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Значение по умолчанию, сек</th>
<th>Диапазон, сек</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>2</td>
<td>0.7 – 2</td>
</tr>
<tr>
<td>T4</td>
<td>1.2</td>
<td>0.5 – 1.2</td>
</tr>
<tr>
<td>T12</td>
<td>1.5</td>
<td>0.8 – 1.5</td>
</tr>
<tr>
<td>T13</td>
<td>1.5</td>
<td>0.8 – 1.5</td>
</tr>
<tr>
<td>T14</td>
<td>3</td>
<td>2 – 3</td>
</tr>
<tr>
<td>T17</td>
<td>1.5</td>
<td>0.8 – 1.5</td>
</tr>
<tr>
<td>T22</td>
<td>180</td>
<td>180 – 360</td>
</tr>
<tr>
<td>T23</td>
<td>180</td>
<td>180 – 360</td>
</tr>
</tbody>
</table>
Наименование таймеров уровня ISUP и значения по умолчанию описаны в рекомендации ITU-T Q.764 Приложение A, Table A.1/Q.764 – Timers in the ISDN user part.

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Значение по умолчанию, сек</th>
<th>Диапазон, сек</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>60</td>
<td>15 – 60</td>
</tr>
<tr>
<td>T5</td>
<td>900</td>
<td>150 – 900</td>
</tr>
<tr>
<td>T6</td>
<td>30</td>
<td>10 – 60</td>
</tr>
<tr>
<td>T7</td>
<td>30</td>
<td>20 – 30</td>
</tr>
<tr>
<td>T8</td>
<td>15</td>
<td>10 – 15</td>
</tr>
<tr>
<td>T9</td>
<td>180</td>
<td>30 – 240</td>
</tr>
<tr>
<td>T12</td>
<td>60</td>
<td>15 – 60</td>
</tr>
<tr>
<td>T13</td>
<td>900</td>
<td>150 – 900</td>
</tr>
<tr>
<td>T14</td>
<td>60</td>
<td>15 – 60</td>
</tr>
<tr>
<td>T15</td>
<td>900</td>
<td>150 – 900</td>
</tr>
<tr>
<td>T16</td>
<td>60</td>
<td>15 – 60</td>
</tr>
<tr>
<td>T17</td>
<td>900</td>
<td>150 – 900</td>
</tr>
<tr>
<td>T18</td>
<td>60</td>
<td>15 – 60</td>
</tr>
<tr>
<td>T19</td>
<td>900</td>
<td>150 – 900</td>
</tr>
<tr>
<td>T20</td>
<td>60</td>
<td>15 – 60</td>
</tr>
<tr>
<td>T21</td>
<td>900</td>
<td>150 – 900</td>
</tr>
<tr>
<td>T22</td>
<td>60</td>
<td>15 – 60</td>
</tr>
<tr>
<td>T23</td>
<td>900</td>
<td>150 – 900</td>
</tr>
<tr>
<td>T24</td>
<td>2</td>
<td>0 – 2</td>
</tr>
<tr>
<td>T25</td>
<td>10</td>
<td>1 – 10</td>
</tr>
<tr>
<td>T26</td>
<td>180</td>
<td>60 – 180</td>
</tr>
<tr>
<td>T33</td>
<td>15</td>
<td>12 – 15</td>
</tr>
<tr>
<td>T34</td>
<td>4</td>
<td>2 – 4</td>
</tr>
<tr>
<td>T35</td>
<td>20</td>
<td>15 – 20</td>
</tr>
</tbody>
</table>

4.1.8.6 Таблица соответствий причин отбоя Q.850-cause и кода ответов SIP-reply

В данном разделе устанавливается соответствие причин отбоя, описанных в рекомендации Q.850 протоколов сигнализации ОКС-7, PRI и ответов класса 4xx, 5xx, 6xx протокола SIP.

По умолчанию используется соответствие, приведенное в Приказе №10 МИНИСТЕРСТВА СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ от 27 января 2009 г, для причин, не описанных в этом приказе, используется соответствие, указанное в рекомендации Q.1912.5 для протоколов SIP-I и RFC3398 – для SIP/SIP-T.

Для создания, редактирования и удаления правил в таблицах соответствий используются кнопки:

- «Добавить правило»;
- «Редактировать параметры правила»;
- «Удалить правило».

- **Имя** – наименование таблицы соответствия Q.850-cause и SIP-reply;
Настройки профиля:

- Направление:
 - SIP-reply -> Q.850-cause – направление из стороны SIP в сторону Q.850;
 - Q.850-cause -> SIP-reply – направление из стороны Q.850 в сторону SIP;
 - Q.850-cause – значение причины Q.850;
 - SIP-reply – значение ответа класса 4xx, 5xx, 6xx протокола SIP.

4.1.8.7 Маршрутизация по расписанию

В данном разделе конфигурируется функция «маршрутизация по расписанию», которая позволяет использовать разные планы нумерации в зависимости от времени и дня недели.

Для создания, редактирования и удаления правил используются кнопки:
- «Добавить правило»;
- «Редактировать параметры правила»;
- «Удалить правило».

Правило маршрутизации

- Дата начала периода работы – выбор даты начала для работы правила маршрутизации по расписанию;
- Продолжительность работы (дней) – продолжительность работы правила маршрутизации по расписанию;
- Повторять каждый месяц – опция позволяет задать повторение использования правила маршрутизации каждый месяц;
- Дни недели – выбор дней недели для работы правила маршрутизации по расписанию;
- Часы работы – выбора часов работы правила маршрутизации по расписанию;
- План нумерации – выбор плана нумерации, в который будет осуществлен переход при работе правила маршрутизации по расписанию.

4.1.8.8 Настройки TCP/IP

В данном разделе устанавливаются сетевые настройки устройства, правила маршрутизации IP-пакетов.
— **DHCP** — протокол, предназначенный для автоматического получения IP-адреса и других параметров, необходимых для работы в сети TCP/IP. Позволяет шлюзу автоматически получить все необходимые сетевые настройки от DHCP-сервера.

— **SNMP** — протокол простого управления сетью. Позволяет шлюзу в реальном времени передавать сообщения о произошедших авариях контролирующему SNMP-менеджеру. Также SNMP-агент шлюза поддерживает мониторинг состояний датчиков шлюза по запросу от SNMP-менеджера.

— **DNS** — протокол, предназначенный для получения информации о доменах. Позволяет шлюзу получить IP-адрес взаимодействующего устройства по его сетевому имени (хосту). Это может быть необходимо, например, при указании хостов в плане маршрутизации, либо использовании в качестве адреса SIP-сервера его сетевого имени.

— **TELNET** — протокол, предназначенный для организации управления по сети. Позволяет удаленно подключиться к шлюзу с компьютера для настройки и управления. При использовании протокола TELNET данные передаются по сети нешифрованными.

— **SSH** — протокол, предназначенный для организации управления по сети. При использовании данного протокола, в отличие от TELNET, вся информация, включая пароли, передается по сети в зашифрованном виде.

4.1.8.9 Таблица маршрутизации

В данном подменю пользователь может настроить статические маршруты.

Статическая маршрутизация позволяет маршрутизировать пакеты к указанным IP-сетям либо IP-адресам через заданные шлюзы. Пакеты, передаваемые на IP-адреса, не принадлежащие IP-сети шлюза и не попадающие под статические правила маршрутизации, будут отправлены на шлюз по умолчанию.

Таблица маршрутизации делится на 2 части, это сконфигурированные маршруты, которые отображаются в верхней части таблицы, и маршруты, созданные автоматически.

Маршруты, созданные автоматически, невозможно изменить, они создаются автоматически при поднятии сетевых и VPN/PPTP интерфейсов, и необходимы для нормальной работы этих интерфейсов.

Для создания, редактирования и удаления маршрута используется меню «Объекты» — «Добавить объект», «Объекты» — «Редактировать объект» и «Объекты» — «Удалить объект», а также кнопки:

- «Добавить маршрут»;
- «Редактировать параметры маршрута»;
- «Удалить маршрут».

Параметры маршрута:

- **Включить** — при установленном флаге маршрут включен;
- **Направление** — IP-сеть, IP-адрес или значение default (для задания шлюза «по умолчанию»);
- **Маска** — задает маску сети для заданной IP-сети (для IP-адреса используйте маску 255.255.255.255);
- **Интерфейс** — выбор сетевого интерфейса передачи;
- **Шлюз** — задает IP-адрес шлюза для маршрута;
- **Метрика** — метрика маршрута.
4.1.8.10 Сетевые параметры

В данном подменю пользователь может указать имя устройства, изменить адрес сетевого шлюза, адрес DNS-сервера и порты доступа по SSH и Telnet.

Сетевые параметры устройства:
- **Имя хоста** – сетевое имя устройства;
- **Шлюз** – адрес сетевого шлюза для устройства;
- **DNS основной** – основной DNS сервер;
- **DNS резервный** – резервный DNS сервер;
- **Порт доступа по ssh** – TCP-порт для доступа к устройству по протоколу SSH, по умолчанию 22;
- **Порт доступа по Telnet** – TCP-порт для доступа к устройству по протоколу Telnet, по умолчанию 23.

4.1.8.11 Сетевые интерфейсы

На устройстве есть возможность сконфигурировать 1 основной сетевой интерфейс eth0, до 8-ми дополнительных VLAN- интерфейсов eth0.XX и до 5-ти дополнительных VLAN/PPP интерфейсов pppX.

Для создания, редактирования и удаления правил сетевых интерфейсов используются кнопки: «Добавить»; «Редактировать»; «Удалить».

Настройки сетевого интерфейса:

Основные настройки
- **Имя сети** – наименование сети;
- **Профиль firewall** – отображение выбранного профиля firewall для данного интерфейса;
- **Tun** – тип интерфейса (для интерфейса eth0 всегда untagged);
- **VLAN ID** – идентификатор VLAN (1- 4095) (только для интерфейсов с типом tagged);
- **Использовать DHCP** – получить IP-адрес динамически от DHCP сервера;
- **IP-адрес** – сетевой адрес устройства;
- **Маска подсети** – маска подсети для устройства;
- **Broadcast** – адрес для широковещательных пакетов;
- **Не получать шлюз автоматически** – не получать IP-адрес шлюза (gateway) динамически от DHCP сервера;
- **Получить DNS автоматически** – получить IP-адрес DNS сервера динамически от DHCP сервера;
- **Получить NTP автоматически** – IP-адрес NTP сервера динамически от DHCP сервера.
Сервисы — меню управления разрешенных сервисов для данного интерфейса

- Управление через Web — разрешает доступ по WEB-интерфейсу через интерфейс;
- Управление по Telnet — разрешает доступ по протоколу telnet через интерфейс;
- Управление по SSH — разрешает доступ по протоколу SSH через интерфейс;
- Использовать SNMP — разрешает использования протокола SNMP через интерфейс;
- Сигнализация SIP — разрешает прием и передачу сигнальной информации SIP через сетевой интерфейс, настроенный в данном разделе;
- Передавать RTP — разрешает прием и передачу голосового трафика через сетевой интерфейс, настроенный в данном разделе;
- Использовать RADIUS — разрешает использование протокола RADIUS через интерфейс.

После изменения IP-ареса, маски сети либо при отключении управления через web-конфигуратор на сетевом интерфейсе во избежание потери доступа до устройства необходимо подтвердить данные настройки, подключившись к web-конфигуратору, иначе по истечении двухминутного таймера произойдет откат к предыдущей конфигурации.

Настойки VPN/PPP интерфейса:

Основные настройки

- Имя сети — наименование сети;
- PPTPD IP — IP-адрес PPTP сервера;
- Имя пользователя — имя пользователя (login) под которым устройство присоединяется к сети;
- Пароль — пароль для VPN-соединения;

Опции

- Запуск при старте устройства — запускать интерфейс при старте устройства;
- Игнорировать шлюз по умолчанию — игнорировать настройку шлюза в разделе «Сетевые параметры»;
- Включить шифрование — включает шифрование;

Сервисы — меню управления разрешенных сервисов для данного интерфейса

- Управление через Web — разрешает доступ по WEB-интерфейсу через интерфейс;
- Управление по Telnet — разрешает доступ по протоколу telnet через интерфейс;
- Управление по SSH — разрешает доступ по протоколу SSH через интерфейс;
- Использовать SNMP — разрешает использования протокола SNMP через интерфейс.
- Использовать RADIUS — разрешает использование протокола RADIUS через интерфейс.

4.1.8.12 Диапазон RTP-портов

В данном разделе конфигурируется диапазон портов UDP для передачи голосовых RTP пакетов.

Параметры UDP-портов

- Начальный порт — номер начального UDP-порта, используемого для передачи разговорного трафика
Цифровой шлюз SMG

(РТР) и данных по протоколу T.38;
- **Диапазон портов** – диапазон (количество) UDP-портов, используемых для передачи разговорного трафика (РТР) и данных по протоколу T.38.

Во избежание конфликтов, порты, используемые для передачи RТР и T.38, не должны пересекаться с портами, используемыми под сигнализацию SIP (по умолчанию порт 5060).

4.1.9 Сетевые сервисы

NTP – протокол, предназначенный для синхронизации внутренних часов устройства. Позволяет синхронизировать время и дату, используемую шлюзом, с их эталонными значениями.

- **Использовать NTP** – включение синхронизации времени по протоколу NTP;
- **Получать настройки автоматически** – при установленном флаге использовать NTP сервер, адрес которого получен по протоколу DHCP;
- **Сервер времени (NTP)** – IP-адрес или имя хоста сервера NTP;
- **Часовой пояс** – настройка часового пояса и отклонения текущего времени относительно GMT (Greenwich Mean Time):
 - **Ручной режим** – выбор отклонения времени относительно GMT;
 - **Автоматический режим** – в данном режиме предоставлена возможность выбора местонахождения устройства, отклонение от GMT будет настроено автоматически, также в данном режиме работает автоматический переход на летнее и зимнее время;
- **Период синхронизации NTP, мин** – период отправки запросов на синхронизацию времени.
- **Сохранить** – сохранить изменения;
- **Отменить** – отменить изменения.

Для принудительной синхронизации времени от сервера необходимо нажать кнопку «Перезапустить NTP-клиента» (происходит перезапуск NTP-клиента).

4.1.9.1 Настройки SNMP

Программное обеспечение SMG позволяет проводить мониторинг устройства, используя протокол SNMP. В подменю «SNMP» выполняются настройки параметров SNMP-агента.

Функции мониторинга по SNMP позволяют запросить у шлюза следующие параметры:
- имя шлюза;
- тип устройства;
– версия программного обеспечения;
– IP-адрес;
– статистика потоков E1;
– статистика субмодулей IP;
– состояние линксетов;
– состояние каналов потоков E1;
– состояние каналов IP (статистика по текущим вызовам через IP).

В статистике текущих вызовов по IP каналах передаются следующие данные:

– номер канала;
– состояние канала;
– идентификатор вызова;
– MAC-адрес вызывающего абонента;
– IP-адрес вызывающего абонента;
– номер вызывающего абонента;
– MAC-адрес вызываемого абонента;
– IP-адрес вызываемого абонента;
– номер вызываемого абонента;
– продолжительность занятия канала.

– Sys Name – имя устройства;
– Sys Contact – контактная информация;
– Sys Location – место расположения устройства;
– ro Community – пароль/сообщество на чтение параметров;
– rw Community – пароль/сообщество на запись параметров;

Применить – применить изменения;
Сброс – отметить настройки.

4.1.9.2 Настройка трапов (SNMP trap)

Подробное описание параметров мониторинга и сообщений Трап приведено в MIB-файлах, поставляемых на диске вместе со шлюзом.

SNMP-агент посылает сообщение SNMPv2-trap при возникновении следующих событий:

– ошибка конфигурации;
– авария SIP модуля;
– авария субмодуля IP;
– авария линксета;
– авария сигнального канала ОКС-7;
– потеря синхронизации, либо синхронизация от менее приоритетного источника;
– авария потока E1;
– удаленная авария потока;
– исправлена ошибка конфигурации;
– восстановлена работоспособность SIP-T модуля после аварии;
– восстановлена работоспособность субмодуля IP после аварии;
– восстановлена работоспособность линксета после аварии;
– восстановлена работоспособность сигнального канала ОКС-7 после аварии;
– восстановлена синхронизация от приоритетного источника;
– нет аварии потока (после наличия аварии либо удаленной аварии потока);
– FTP-сервер недоступен, оперативная память для хранения CDR-файлов заполнена свыше 50% (15 – 30 MB);
– FTP-сервер недоступен, оперативная память для хранения CDR-файлов заполнена меньше 50% (5 – 15 MB);
– FTP-сервер недоступен, оперативная память для хранения CDR-файлов заполнена до 5 MB;
– статус обновления программного обеспечения и загрузки/выгрузки файла конфигурации.

<table>
<thead>
<tr>
<th>№</th>
<th>Тип</th>
<th>Community</th>
<th>IP-адрес</th>
<th>Порт</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>trap2v2walk</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

– Перезапустить SNMPd – по нажатию на кнопку осуществляется перезапуск SNMP-клиента.

Для создания, редактирования и удаления параметров трапов используются кнопки:

– «Добавить»;
– «Редактировать»;
– «Удалить».

– Тип – тип SNMP сообщения (TRAPv1, TRAPv2, INFORM);
– Community – пароль, содержащийся в трапах;
– IP-адрес – IP-адрес приемника трапов;

4.1.9.3 FTP-сервер

В данном разделе производится конфигурирование встроенного FTP-сервера, который служит для предоставления доступа по протоколу FTP к каталогам:

– cdr – каталог с файлами CDR записей;
– log – каталог с файлами трассировок и другой отладочной информацией;
– mnt – каталог с файлами внешних накопителей (SSD-дисков, USB-флеш).

4.1.9.4 Параметры FTP-сервера:

– Использовать – опция включения/отключения использования локального FTP-сервера;
– Сетевой интерфейс – выбор сетевого интерфейса, на котором будет запущен FTP-сервер;
– Порт – выбор TCP-порта, на котором будет запущен FTP-сервер;
– Таймаут авторизации, сек – время ввода данных для авторизации абонента на FTP-сервере, по его истечении сервер принудительно разорвет соединение;
– Таймаут бездействия, сек — время бездействия пользователя на FTP-сервере, по его истечении сервер принудительно разорвет соединение;
– Таймаут сессии, сек — время продолжительности сессии.

4.1.10 Настройка пользователей

По умолчанию на устройстве создан абонент с правами на чтение всех каталогов с логином ftpuser и паролем ftppasswd.

<table>
<thead>
<tr>
<th>Имя</th>
<th>Доступ к директориям</th>
</tr>
</thead>
<tbody>
<tr>
<td>User1</td>
<td>R</td>
</tr>
</tbody>
</table>

– Имя – имя пользователя;
– Пароль – пароль пользователя;
– Доступ к log – настройка доступа к каталогу log, чтение/запись;
– Доступ к mnt – настройка доступа к каталогу mnt, чтение/запись;
– Доступ к CDR – настройка доступа к каталогу CDR, чтение/запись.

4.1.11 Безопасность

4.1.11.1 Настройка SSL/TLS

Данный раздел предназначен для получения самоподписанного сертификата, получение которого позволяет использовать шифрованное подключение к шлюзу по протоколу HTTP и загрузку/выгрузку файлов конфигурации по протоколу FTPS.

– Протокол взаимодействия с web-конфигуратором — режим подключения WEB конфигуратором:
 • **HTTP или HTTPS** – разрешено как нешифрованное подключение – по HTTP, так и шифрованное – по HTTPS. При этом подключение по HTTPS возможно только при наличии сгенерированного сертификата;
 • **HTTPS only** – разрешено только шифрованное подключение по HTTPS. Подключение по HTTPS возможно только при наличии сгенерированного сертификата;

Сгенерировать новые сертификаты

Данные параметры необходимо вводить латинскими буквами
— Двухзначный код страны – код страны (для России – RU);
— Регион – название региона, области, края, республики и т.п.;
— Город – название города;
— Организация – название организации;
— Подразделение – название подразделения или отдела;
— Контактный e-mail – адрес электронной почты;
— Имя устройства (или IP-адрес) – IP-адрес шлюза.

4.1.11.2 Fail2ban

Fail2ban – это утилита, которая отслеживает в log-файлах попытки обратиться к различным сервисам. При обнаружении постоянно повторяющихся неудачных попыток обращения с одного и того же IP-адреса или хоста, fail2ban блокирует дальнейшие попытки с этого IP-адреса/хоста.

В качестве неудачных попыток могут быть идентифицированы:
— подбор аутентификационных данных – прием запросов REGISTER с известного IP-адреса, но с неверными аутентификационными данными;
— прием запросов (REGISTER, INIVITE, SUBSCRIBE, и других) с неизвестного IP-адреса;
— прием неизвестных запросов по SIP-порту.

Параметры Fail2ban

— Включить – запустить утилиту Fail2ban;
— Время блокировки, с – время в секундах, на протяжении которого доступ с подозрительного адреса будет блокирован;
— Количество попыток доступа – максимальное число неудачных попыток доступа к сервису, прежде чем хост будет заблокирован с помощью fail2ban.

Управление Fail2ban

— Перезапустить – начать/возобновить работу Fail2ban;
— Остановить – остановить работу Fail2ban.

Белый список (последние 30 записей) – список IP-адресов, которые не могут быть блокированы fail2ban.
Черный список (последние 30 записей) – список запрещенных адресов, доступ с которых будет всегда заблокирован. Всего может быть создано до 8192 записей.

Для добавления/поиска/удаления адреса в списке необходимо указать его в поле ввода и нажать кнопку «Добавить»/«Найти»/«Удалить».

Возможно ввести как IP-адрес, так подсеть.
Для ввода подсети необходимо ввести данные в следующем формате: AAA.BBB.CCC.DDD/mask

Пример

192.168.0.0/24 – запись соответствует адресу сети 192.168.0.0 с маской 255.255.255.0

Скачать белый/черный список IP-адресов целиком – в Web-интерфейсе отображается только 30 последних записей в файле, нажатие на данную кнопку позволяет скачать весь белый или черный список на компьютер.

Список заблокированных адресов – перечень адресов, заблокированных в ходе работы fail2ban.

Скачать список заблокированных IP-адресов целиком – позволяет скачать весь список заблокированных адресов на компьютер.

Обновление списков происходит по нажатию кнопки «Обновить» напротив заголовка.

4.1.11.3 Профили firewall

Firewall или сетевой экран – комплекс программных средств, осуществляющий контроль и фильтрацию передаваемых через него сетевых пакетов в соответствии с заданными правилами, что необходимо для защиты устройства от несанкционированного доступа.

Профили firewall

Для создания, редактирования и удаления профилей firewall используются кнопки:
«Добавить»;
«Редактировать»;
«Удалить».

Программное обеспечение позволяет настроить правила firewall для входящего, исходящего и транзитного трафика, а также для определенных сетевых интерфейсов.

При создании правила настраиваются следующие параметры:

– Имя – имя правила;
– Использовать – определяет, будет ли использоваться правило. Если флаг не установлен, то правило будет неактивно;
– Тип трафика – тип трафика, для которого создается правило:
 – входящий – предназначенный для SMG;
 – исходящий – отправляемый SMG;
– Источник пакета – определяет сетевой адрес источника пакетов либо для всех адресов, либо для конкретного IP-адреса или сети:
 – любой – для всех адресов (флаг установлен);
 – IP-адрес/маска – для конкретного IP-адреса или сети. Поле активно при снятом флаге «любой». Для сети обязательно указывается маска, для IP-адреса указание маски не обязательно;
– Порты источника – TCP/UDP порт или диапазон портов (указывается через тире «-») источника пакетов. Данный параметр используется только для протоколов TCP и UDP, поэтому, чтобы данное поле стало активным, необходимо выбрать в поле протокол UDP, TCP, либо TCP/UDP;
– Адрес назначения – определяет сетевой адрес приемника пакетов либо для всех адресов, либо для конкретного IP-адреса или сети:
 – любой – для всех адресов (флаг установлен);
 – IP-адрес/маска – для конкретного IP-адреса или сети. Поле активно при снятом флаге «любой». Для сети обязательно указывается маска, для IP-адреса указание маски не обязательно;
– Порты назначения – TCP/UDP порт или диапазон портов (указывается через тире «-») приемника пакетов. Данный параметр используется только для протоколов TCP и UDP, поэтому, чтобы данное поле стало активным, необходимо выбрать в поле протокол UDP, TCP, либо TCP/UDP;
– Протокол – протокол, для которого будет использоваться правило: UDP, TCP, ICMP, либо TCP/UDP;
– Тип сообщения (ICMP) – тип сообщения протокола ICMP, для которого используется правило. Данное поле активно, если в поле «Протокол» выбран ICMP;
– Действие – действие, выполняемое данным правилом:
 – ACCEPT – пакеты, попадающие под данное правило, будут пропущены сетевым экраном firewall;
 – DROP – пакеты, попадающие под данное правило, будут отброшены сетевым экраном firewall без какого-либо информирования стороны, передавшей пакет;
 – REJECT – пакеты, попадающие под данное правило, будут отброшены сетевым экраном firewall. Стороне, передавшей пакет, будет отправлен либо пакет TCP RST, либо ICMP destination unreachable.

Созданное правило попадет в соответствующий раздел: «Правила для входящего трафика», «Правила для исходящего трафика» либо «Правила для транзитного трафика».

Также в профиле firewall возможно указать сетевые интерфейсы, для которых будут использоваться правила данного профиля.

Каждый сетевой интерфейс может одновременно использоваться только в одном профиле firewall. При попытке назначения сетевого интерфейса в новый профиль из старого он будет удален.

Для применения правил необходимо нажать на кнопку «Применить», которая появится, если в настройках firewall были сделаны изменения.
4.1.11.4 Список разрешенных IP-адресов

В данном разделе конфигурируется список разрешенных IP-адресов, с которых администратор может подключаться к устройству по WEB-интерфейсу, а также по протоколам Telnet и SSH. По умолчанию разрешены все адреса.

- **Доступ только для разрешенных IP-адресов** – при установке флага применяется список разрешенных IP-адресов, иначе доступ разрешен с любого адреса.
- **Применить** – применить изменения;
- **Подтвердить** – подтвердить изменения

Для создания и удаления списка разрешенных адресов используются кнопки:
- «Добавить»;
- «Удалить».

После формирования списка адресов необходимо нажать кнопку «Применить» и «Подтвердить», если в течение 60 секунд не подтвердить изменения, настройки возвращаются к предустановленным значениям – это позволяет защитить пользователя от потери доступа к устройству.

4.1.12 Сетевые утилиты

4.1.12.1 PING

Утилита используется для проверки соединения (наличия маршрута) до устройства в сети.

IP Probing – используется для однократного контроля соединения до устройства в сети.
- Для передачи Ping-запроса (используется протокол ICMP) необходимо ввести IP-адрес либо сетевое имя узла в поле «IP probing» и нажать кнопку «Ping». Результат выполнения
команды будет выведен в нижней части страницы. В результате указывается количество переданных пакетов, количество полученных на них ответов, процент потерь, а также время приема-передачи (минимальное/среднее/максимальное) в миллисекундах.

Периодический ping – используется для периодического контроля соединений до устройств в сети.

— **Использовать** – при установленном флаге посылать ping-запросы на адреса, указанные в списке хостов;
— **Период, мин** – интервал между запросами в минутах;
— **Количество попыток** – число попыток отправить запрос на адрес.

Состояние

— **Перезапустить** – запуск/перезапуск периодического ping;
— **Остановить** – принудительная остановка периодического ping;
— **Информация** – по нажатию данной кнопки для просмотра станет доступен лог-файл ‘/tmp/log/hosttest.log’ с данными о последней попытке периодического ping-запроса.

Список хостов – список IP-адресов, на которые будут отправляться периодические ping-запросы.

Для добавления нового адреса в список необходимо указать его в поле ввода и нажать кнопку «Добавить». Для удаления – нажать кнопку «Удалить» напротив требуемого адреса.

4.1.13 Настройка RADIUS

4.1.13.1 Серверы RADIUS
Устройство поддерживает до 8 серверов авторизации (Authorization) и до 8 серверов тарификации (Accounting).

— **Таймаут ответа сервера** — время, в течение которого ожидается ответ сервера;
— **Число попыток отправки запроса** — количество повторов запроса к серверу. При безуспешном использовании всех попыток сервер считается неактивным, и запрос перенаправляется на другой сервер, если он указан, иначе — детектируется ошибка;
— **Время неиспользования сервера при сбое** — время, в течение которого сервер считается неактивным (запросы на него не отправляются);
— **Сетевой интерфейс** — выбор сетевого интерфейса, с которого будут отправлять пакеты RADIUS.
— **Авторизация пользователей WEB/telnet/ssh с сервера RADIUS** — включение опции авторизации пользователей на RADIUS-сервере при попытке доступа к устройству через WEB-интерфейс, telnet и SSH. После ввода логин/пароля на RADIUS-сервер будет отправлен Access-Request пакет, в случае удачной авторизации сервер ответит Access-Accept и пользователь получит доступ до устройства, иначе доступ не будет разрешен.

4.1.13.2 Список профилей

![Список профилей](image)

<table>
<thead>
<tr>
<th>Параметры профиля</th>
<th>Радиус-профиль 00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Использовать RADIUS-Authorization</td>
<td>Включить/выключить отправку сообщений аутентификации/авторизации (Access Request) на RADIUS-сервер;</td>
</tr>
<tr>
<td>Использовать RADIUS-Accounting</td>
<td>Включить/выключить отправку сообщений тарификации (Accounting Request) на RADIUS-сервер;</td>
</tr>
</tbody>
</table>
Параметры модификации

- **Modifikatory InCdPN** – выбор модификатора номера вызываемого абонента (CdPN) для входящего соединения, применительно для полей Called-Station-id, xpgk-dst-number-in в сообщениях RADIUS-Authorization и RADIUS-Accounting;

- **Modifikatory InCgPN** – выбор модификатора номера вызывающего абонента (CgPN) для входящего соединения, применительно для полей Calling-Station-id, xpgk-src-number-in в сообщениях RADIUS-Authorization и RADIUS-Accounting;

- **Modifikatory OutCdPN** – выбор модификатора номера вызываемого абонента (CdPN) для исходящего соединения, применительно для поля xpgk-src-number-out в сообщениях RADIUS-Authorization и RADIUS-Accounting;

- **Modifikatory OutCgPN** – выбор модификатора номера вызывающего абонента (CgPN) для исходящего соединения, применительно для поля xpgk-dst-number-out в сообщениях RADIUS-Authorization и RADIUS-Accounting.

Параметры RADIUS- Authorization

Запросы аутентификации / авторизации могут быть отправлены в различные моменты вызова:

- при входящем занятии;
- при конце набора (получении полного номера набора).

При сбое сервера (неполучении ответа от сервера) возможно установление ограничений на исходящую связь:

- нет ограничений – разрешать все вызовы;
- только местная и зоновая сети – разрешать вызовы на спецслужбы, на местную и зоновую сеть;
- только местная сеть – разрешать вызовы на спецслужбы и местную сеть;
- только спецслужбы – разрешать вызовы только на спецслужбы;
- все запрещено – запрещать все вызовы.

Данное ограничение определяет возможность маршрутизации вызова по префиксу, на котором устанавливается соответствующий тип (местный, междугородный и т. д.).

- **Поле USER-NAME** – выбор значения атрибута User-Name в соответствующем пакете авторизации Access Request (RADIUS-Authorization):
 - CgPN – в качестве значения использовать телефонный номер вызывающей стороны;
 - IP or E1-stream – в качестве значения использовать IP-адрес вызывающей стороны или номер потока, по которому осуществляется входящее соединение;
 - Trunk name – в качестве значения использовать имя транка, по которому осуществляется входящее соединение.

- **Поле USER-PASSWORD** – установка значения атрибута User-Password в соответствующем пакете авторизации RADIUS-Authorization;

- **Время сессии** – установка ограничения максимальной продолжительности вызова:
 - Не учитывать – не использовать возможность ограничения максимальной продолжительности вызова;
— Учитывать Session-Time — использовать для ограничения максимальной продолжительности вызова значение атрибута Session-Timeout(27);
— Учитывать Cisco h323-credit-time – использовать для ограничения максимальной продолжительности вызова значение Cisco VSA (9) h323-credit-time(102);
— Приоритет Session-Time — если в ответе от сервера присутствуют оба параметра (session-time и Cisco h323-credit-time), то используется session-time, а Cisco h323-credit-time игнорируется;
— Приоритет Cisco h323-credit-time – если в ответе от сервера присутствуют оба параметра (session-time и Cisco h323-credit-time), то используется Cisco h323-credit-time, а session-time игнорируется.

Шлюз SMG может использовать значение атрибута Session-Timeout или атрибута Cisco VSA h323-credit-time из пакета Access-Accept для ограничения максимальной продолжительности авторизуемого вызова.

— Разрешить доступ к спецслужбам при получении отказа в соединении от сервера – при получении Access-Reject от сервера разрешить вызов на узел спецслужб.

Установка опциональных атрибутов пакета Authentication-Request:

— NAS-Port-Type – тип физического порта NAS (сервера, где аутентифицируется пользователь), по умолчанию Async;
— Service-Type – тип услуги, по умолчанию не используется (Not Used);
— Framed-protocol – протокол, указывается при использовании пакетного доступа, по умолчанию не используется (Not Used).

Параметры RADIUS-Accounting

Отправлять запросы

— accounting-start – отправлять стартовый пакет accounting, извещающий RADIUS-сервер о начале разговора;
— accounting-stop – отправлять стоповый пакет accounting, извещающий RADIUS-сервер о завершении разговора;
— accounting-stop для неуспешных вызовов – передавать на RADIUS-сервер информацию о неуспешных вызовах;
— accounting-update с периодом – передавать во время разговора на RADIUS-сервер с заданным периодом пакет update, говорящий об активности текущего разговора;
— accounting для call-origin=answer – передавать на RADIUS-сервер информацию об исходящей части вызова

Поле «call-origin» в варианте CISCO – для входящей части вызова передавать значение «answer», а для исходящей части – « originate »:

При сбое сервера (не получении ответа от сервера) возможно установление ограничений на исходящую связь:

— нет ограничений – разрешать все вызовы;
— только местная и зоновая сети – разрешать вызовы на спецслужбы, на местную и зоновую сеть;
— только местная сеть – разрешать вызовы на спецслужбы и местную сеть;
— только спецслужбы – разрешать вызовы только на спецслужбы;
— все запрещено – запрещать все вызовы.

Данное ограничение определяет возможность маршрутизации вызова по префиксу, на котором устанавливается соответствующий тип (местный, междугородный и т. д.).
— Поле USER-NAME – выбор значения атрибута User-Name в пакете Accounting Request (RADIUS-Accounting):
 — CgPN – в качестве значения использовать телефонный номер вызывающей стороны;
 — IP or E1-stream – в качестве значения использовать IP-адрес вызывающей стороны или номер потока, по которому осуществляется входящее соединение;
 — Trunk name – в качестве значения использовать имя транка, по которому осуществляется входящее соединение.

— Поле CdPN – выбор значения номера вызываемого абонента, которое используется при формировании пакетов RADIUS для некоторых пар Атрибут-Значение (раздел 4.1.13.3):
 — CdPN-in – использовать номер вызываемого абонента до модификации (номер, полученный в пакете SETUP/INVITE);
 — CdPN-out – использовать номер вызываемого абонента после модификации.

— Поле CgPN – выбор значения номера вызывающего абонента, которое используется при формировании пакетов RADIUS для некоторых пар Атрибут-Значение (раздел 4.1.13.3):
 — CgPN-in – использовать номер вызывающего абонента до модификации (номер, полученный в пакете SETUP/INVITE);
 — CgPN-out – использовать номер вызывающего абонента после модификации.

4.1.13.2.1 Формат пакетов RADIUS

Описание каждого пакета состоит из описания всех пар Атрибут-Значение (Attribute-Value Pair) для этого типа пакета. Атрибуты могут быть как стандартными, так и специфическими атрибутами вендоров (Vendor-Specific Attribute). Если по какой-либо причине значение атрибута неизвестно (например, при отсутствии исходящего транка невозможно определить значение переменной CdPN_OUT, которое используется в качестве значения некоторых атрибутов), то этот атрибут не добавляется в сообщение.

Для стандартных атрибутов описание имеет вид:

Имя атрибута(Номер атрибута): Значение атрибута

Для атрибутов вендоров вид:

Имя атрибута(Номер атрибута): Имя вендора(Номер вендора): Имя VSA(Номер VSA): Значение VSA

где:

Имя атрибута всегда Vendor-Specific;
Номер атрибута всегда 26;
Имя вендора – имя вендора;
Номер вендора – номер вендора, присвоенный ему организацией IANA в документе “PRIVATE ENTERPRISE NUMBERS” (http://www.iana.org/assignments/enterprise-numbers);
“**Имя VSA**” – имя атрибута вендора;
“**Значение VSA**” – значение атрибута вендора.

В качестве значения атрибута может использоваться конструкция вида <$NAME>, где NAME – это имя переменной. Описание значения переменных приводится в разделе 4.1.13.3

Пакет Access-Request
User-Name(1): <$USER_NAME>
User-Password(2): строится на основе пароля “eltex” (без кавычек)
NAS-IP-Address(4): <$SMG_IP>
Called-Station-Id(30): <$CdPN_IN>
Сточный пакет Accounting-Request
Acct-Status-Type(40) - Stop(2)
User-Name(1): <$USER_NAME>
Called-Station-Id(30): <$CgPN_IN>
Calling-Station-Id(31): <$CgPN_IN>
Acct-Delay-Time(41): согласно RFC2866
Event-Timestamp(55): согласно RFC2869
NAS-IP-Address(4): <$SMG_IP>
Acct-Session-Id(44): <$SESSION_ID>
Vendor-Specific(26): Cisco(9): Cisco-AVPair(1): xpgk-src-number-in=<$CgPN_IN>
Vendor-Specific(26): Cisco(9): Cisco-AVPair(1): xpgk-src-number-out=<$CgPN_OUT>
Vendor-Specific(26): Cisco(9): Cisco-AVPair(1): xpgk-dst-number-in=<$CdPN_IN>
Vendor-Specific(26): Cisco(9): Cisco-AVPair(1): xpgk-dst-number-out=<$CdPN_OUT>
Vendor-Specific(26): Cisco(9): Cisco-AVPair(1): xpgk-route-retries=<ROUTE_RETRIES>
Vendor-Specific(26): Cisco(9): h323-remote-address(23): h323-remote-address=<$DST_IP>
Vendor-Specific(26): Cisco(9): h323-conf-id(24): h323-conf-id=<CALL_ID>
Vendor-Specific(26): Cisco(9): h323-setup-time(25): h323-setup-time=<TIME_SETUP>
Vendor-Specific(26): Cisco(9): h323-call-origin(26): h323-call-origin=origin
Vendor-Specific(26): Cisco(9): h323-call-type(27): h323-call-type=<CALL_TYPE>
Vendor-Specific(26): Cisco(9): h323-connect-time(28): h323-connect-time=<TIME_CONNECT>
Vendor-Specific(26): Cisco(9): h323-gw-id(33): h323-gw-id=<$SMG_IP>

Сточный пакет Accounting-Request
Acct-Status-Type(40) - Start(1)
User-Name(1): <$USER_NAME>
Called-Station-Id(30): <$CdPN>
Calling-Station-Id(31): <$CgPN_IN>
Acct-Delay-Time(41): согласно RFC2866
Event-Timestamp(55): согласно RFC2869
NAS-IP-Address(4): <$SMG_IP>
Acct-Session-Id(44): <$SESSION_ID>
Vendor-Specific(26): Cisco(9): Cisco-AVPair(1): xpgk-src-number-in=<$CgPN_IN>
Vendor-Specific(26): Cisco(9): Cisco-AVPair(1): xpgk-src-number-out=<$CgPN_OUT>
Vendor-Specific(26): Cisco(9): Cisco-AVPair(1): xpgk-dst-number-in=<$CdPN_IN>
Vendor-Specific(26): Cisco(9): Cisco-AVPair(1): xpgk-dst-number-out=<$CdPN_OUT>
Vendor-Specific(26): Cisco(9): Cisco-AVPair(1): xpgk-route-retries=<ROUTE_RETRIES>
Vendor-Specific(26): Cisco(9): h323-remote-address(23): h323-remote-address=<$DST_IP>
Vendor-Specific(26): Cisco(9): h323-conf-id(24): h323-conf-id=<CALL_ID>
Vendor-Specific(26): Cisco(9): h323-setup-time(25): h323-setup-time=<TIME_SETUP>
Vendor-Specific(26): Cisco(9): h323-call-origin(26): h323-call-origin=origin
Vendor-Specific(26): Cisco(9): h323-call-type(27): h323-call-type=<CALL_TYPE>
Vendor-Specific(26): Cisco(9): h323-connect-time(28): h323-connect-time=<TIME_CONNECT>
Vendor-Specific(26): Cisco(9): h323-gw-id(33): h323-gw-id=<$SMG_IP>
Пакет Access-Accept

При получении пакета Access-Accept от сервера RADIUS вызов считается авторизованным. После чего осуществляется поиск исходящего транкана, и в случае успеха, производится попытка установления соединения.

Если в пакете был передан атрибут Session-Time(27) или атрибут Cisco VSA (9) h323-credit-time(102), а также была задана соответствующая настройка в профиле RADIUS, то значение атрибута будет использовано для ограничения максимальной продолжительности вызова. По истечении этого времени соединение будет разорвано со стороны SMG.

4.1.13.3 Описание переменных

<table>
<thead>
<tr>
<th>Переменная</th>
<th>Описание и возможные значения</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CALL_TYPE</td>
<td>определяется на основании того, к какой среде передачи принадлежит исходящий транк:</td>
</tr>
<tr>
<td></td>
<td>• "Telephony", если исходящий транк – PSTN (TDM);</td>
</tr>
<tr>
<td></td>
<td>• "VoIP", если исходящий транк – VoIP</td>
</tr>
<tr>
<td>$CdPN</td>
<td>определяется исходя из настроек SMG:</td>
</tr>
<tr>
<td></td>
<td>• $CdPN = $CdPN_IN [по умолчанию];</td>
</tr>
<tr>
<td></td>
<td>• $CdPN = $CdPN_OUT</td>
</tr>
<tr>
<td>$CdPN_IN</td>
<td>номер вызываемого абонента до преобразования (полученного в SETUP/INVITE)</td>
</tr>
<tr>
<td>$CdPN_OUT</td>
<td>номер вызывающего абонента после преобразования (отправленного вызываемой стороне в SETUP/INVITE)</td>
</tr>
<tr>
<td>$CgPN_IN</td>
<td>номер вызывающего абонента до преобразования (полученного в SETUP/INVITE)</td>
</tr>
<tr>
<td>$CgPN_OUT</td>
<td>номер вызывающего абонента после преобразования (отправленного вызываемой стороне в SETUP/INVITE)</td>
</tr>
<tr>
<td>$DISCONNECT_CAUSE</td>
<td>Q.850 причина завершения вызова</td>
</tr>
<tr>
<td>$DST_ID</td>
<td>название исходящего транкана для данного вызова</td>
</tr>
<tr>
<td>$DST_IP (string)</td>
<td>IP-адрес терминирующего устройства в случае, если исходящий транк VoIP; пример: 192.168.0.1</td>
</tr>
<tr>
<td>$LOCAL_DISCONNECT_CAUSE</td>
<td>локальная причина завершения вызова; значения:</td>
</tr>
<tr>
<td></td>
<td>• 1 – соединение с вызываемым абонентом было установлено (User-Answer);</td>
</tr>
<tr>
<td></td>
<td>• 2 – неверный или неполный формат номера (Incomplete-Number);</td>
</tr>
<tr>
<td></td>
<td>• 3 – номер не существует (Unassigned-Number);</td>
</tr>
<tr>
<td></td>
<td>• 4 – неуспешная попытка установления соединения</td>
</tr>
</tbody>
</table>
причина не определена (Unsuccessfull-Other-Cause);
- 5 – вызываемый абонент занят (User-Busy);
- 6 – неисправность оборудования (Out-of-Order);
- 7 – нет ответа от вызываемого абонента (No-Answer);
- 8 – исходящий транк недоступен (Unavailable-Trunk);
- 9 – получен отказ в авторизации от сервера RADIUS
 (Access-Denied);
- 10 – нет свободного канала для установления соединения
 (Unavailable-Voice-Channel);
- 11 – сервер RADIUS недоступен (RADIUS-Server-Unavailable)

$NAS_PORT
(xport.type<<24) + (xport.slot<<16) + (xport.stream<<8) + (xport.cell)

$ROUTE_RETRIES
tекущий номер попытки; отчёт начинается с 1 (для первой
попытки, соответственно)

$SESSION_ID
идентификатор сессии

$SESSION_TIME
время продолжительности разговора

$SMG_IP
IP-адрес SMG

$SRC_ID
название входящего транка для данного вызова

$TIME_SETUP
время прихода сообщения SETUP/INVITE в формате hh:mm:ss.uuu t
www MMM dd yyyy

$TIME_CONNECT
время получения CONNECT/200 OK от вызываемой стороны в
формате hh:mm:ss.uuu t www MMM dd yyyy

$TIME_DISCONNECT
время получения DISCONNECT/BYE от одной из сторон в формате
hh:mm:ss.uuu t www MMM dd yyyy; если звонок неуспешный, то
указывается время сообщения, при получении которого SMG
начинает процедуру разрушения вызова (CANCEL, прочие)

$USER_NAME
определяется исходя из настроек входящего транка:
- <$CgPN_IN>;
- IP-адрес источника или номер потока E1 [по умолчанию];
- имя входящего транка
4.1.14 Трассировки

4.1.14.1 PCAP трассировки

В меню производится настройка параметров для анализа сетевого трафика и протоколов TDM сети.

TCPdump – настройки для утилиты TCP–dump

TCPdump – утилита, позволяющая перехватывать и анализировать сетевой трафик.

- **Интерфейс** – интерфейса для захвата сетевого трафика;
- **Ограничение длины пакетов** – ограничение размера захватываемых пакетов, в байтах;
- **Добавить фильтр** – фильтр пакетов для утилиты tcpdump.

Структура выражений-фильтров

Каждое выражение, задающее фильтр, включает один или несколько примитивов, состоящих из одного или нескольких идентификаторов объекта и предшествующих ему классификаторов. Идентификатором объекта может служить его имя или номер.

Классификаторы объектов

1. **type** – указывает тип объекта, заданного идентификатором. В качестве типа объектов могут указываться значения:
 - host (хост),
 - net (сеть),
 - port (порт).
 Если тип объекта не указан, предполагается значение host.

2. **dir** – задает направление по отношению к объекту. Для этого классификатора поддерживаются значения:
 - src (объект является отправителем),
 - dst (объект является получателем),
 - src or dst (отправитель или получатель),
 - src and dst (отправитель и получатель).
 Если классификатор dir не задан, предполагается значение src or dst.
 Для режима захвата с фиктивного интерфейса апу могут использоваться классификаторы inbound и outbound.
3. **proto** – задает протокол, к которому должны относиться пакеты. Данный классификатор может принимать значения:

- `ether`, `fddi1`, `tr2`, `wlan3`, `ip`, `ip6`, `arp`, `rarp`, `decnet`, `tcp` и `udp`.

Если примитив не содержит классификатора протокола, предполагается, что данному фильтру удовлетворяют все протоколы, совместимые с типом объекта.

Кроме объектов и квалификаторов примитивы могут содержать арифметические выражения и ключевые слова:

- `gateway` (шлюз),
- `broadcast` (широковещательный),
- `less` (меньше),
- `greater` (больше).

Сложные фильтры могут содержать множество примитивов, связанных между собой с использованием логических операторов `and`, `or` и `not`. Для сокращения задающих фильтры выражений можно опускать идентичные списки квалификаторов.

Примеры фильтров

- `dst foo` – отбирает пакеты, в которых поле адреса получателя IPv4/v6 содержит адрес хоста foo;
- `src net 128.3.0.0/16` – отбирает все пакеты IPv4/v6, отправленные из указанной сети;
- `ether broadcast` – обеспечивает отбор всех широковещательных кадров Ethernet. Ключевое слово `ether` может быть опущено;

Для получения более детальной информации о фильтрации пакетов обращайтесь к специализированным ресурсам.

- Запустить – начать сбор данных;
- Завершить – закончить сбор данных;
- Перезапустить – перезапуск утилиты, начать заново сбор данных.

В блоке Файлы и папки в директории `/tmp/log` доступен список файлов в соответствующей директории `/tmp/log`.

Для скачивания на локальный ПК необходимо установить флаги напротив требуемых имен файлов и нажать кнопку «Загрузить». Для удаления указанных файлов из директории – кнопку «Удалить».

PCM–dump – настройки для утилиты PCM–dump

PCMdump – утилита, позволяющая перехватывать и анализировать сигнальный трафик по потокам E1. На устройстве реализована возможность снятия PCM-dump как с одного потока, так и с нескольких, при снятии PCM-dump с нескольких потоков одновременно трассировка записывается в один файл, в который заносятся сигнальные сообщения с нескольких потоков, при этом одновременное снятие PCM-dump с потоков с разными протоколами сигнализацией невозможно.

- Выбрать – выбор потоков E1;
- Сигнализация – протокол сигнализации, выбранный на потоке:
 - O7 – OKC-7;
 - Q – Q.931;
- Запустить – начать сбор данных;
- Завершить – закончить сбор данных;
– Перезапустить – перезапустить утилиту и начать сбор данных заново.

В блоке Файлы и папки в директории /tmp/log доступен список файлов в соответствующей директории /tmp/log.

Для скачивания на локальный ПК необходимо установить флаги напротив требуемых имен файлов и нажать кнопку «Загрузить». Для удаления указанных файлов из директории – кнопку «Удалить».

4.1.14.2 Трассировка PBX

Использование трассировки IP PBX приводит к задержкам в работе устройства. Данный вид отладки РЕКОМЕНДУЕТСЯ использовать только в случае возникновения проблем в работе шлюза для выявления их причин.

В блоке PBX PSTN снимается лог работы и взаимодействия узлов устройства, а также обмен сообщениями по различным протоколам. В параметрах PBX PSTN настраивается уровень трассировок по событиям и протоколам.

В блоке PBX IP снимается трассировка сообщений и ошибок протокола SIP:

– Запустить – начать сбор данных;
– Завершить – закончить сбор данных;
– Перезапустить – перезапуск, начать заново сбор данных.

После остановки сбора данных появляются кнопки, позволяющие скачать файлы трассировки на локальный компьютер.

В блоке Файлы и папки в директории /tmp/log доступен список файлов в соответствующей директории /tmp/log.

Для скачивания на локальный ПК необходимо установить флаги напротив требуемых имен файлов и нажать кнопку «Загрузить». Для удаления указанных файлов из директории – кнопку «Удалить».
4.1.14.3 Настройки syslog

В меню «SYSLOG» производится настройка параметров системного журнала.

SYSLOG – протокол, предназначенный для передачи сообщений о происходящих в системе событиях. Программное обеспечение шлюза позволяет формировать журналы данных по работе приложений системы, работе протоколов сигнализации, авариям и передавать их на SYSLOG сервер.

Высокие уровни отладки могут привести к задержкам в работе устройства. НЕ РЕКОМЕНДУЕТСЯ без необходимости использовать системный журнал.

Системный журнал необходимо использовать только в случае возникновения проблем в работе шлюза для выявления их причин. Для того чтобы определиться с необходимыми уровнями отладки, рекомендуем Вам обратиться в сервисный центр ООО «Предприятие «ЭЛТЕКС».

В параметрах syslog настраивается IP-адрес syslog-сервера, UDP-порт, на котором syslog-сервер принимает сообщения, и уровни отладки по событиям и протоколам.

Вывод истории введенных команд – используется для сохранения истории изменений в настройках шлюза.

– IP-адрес серевра – адрес сервера, на который будет передаваться журнал введенных команд;
– Порт сервера – порт сервера, на который будет передаваться журнал введенных коман;
– Уровень детализации – уровень детализации журнала введенных команд;
– Отключить логи – не формировать журнал введенных команд;
– Стандартный – в сообщениях передается название измененного параметра;
– Полный – в сообщениях передается название измененного параметра и значения параметра до и после изменения.

Конфигурация системного журнала – настройки конфигурации системного журнала.

– Включить ведение логов – при установленном флаге история событий будет сохраняться, при отсутствии флага ведение журнала остановлено;
– Отправлять на сервер – при установленном флаге системный журнал будет сохраняться на сервере по указанному адресу;
– IP-адрес сервера – адрес сервера для хранения системного журнала;
– Порт сервера – порт сервера, на который будет передаваться системный журнал.
4.1.15 Работа с объектами и меню «Объекты»

Помимо применения иконок создания, редактирования и удаления объектов в соответствующих вкладках, существует возможность выполнять действия на указанном объекте с помощью соответствующих пунктов меню «Объекты».

4.1.16 Сохранение конфигурации и меню «Сервис»

Для отмены всех изменений необходимо выбрать меню «Сервис» – «Отменить все изменения».

Для записи конфигурации в энергонезависимую память устройства необходимо выбрать меню «Сервис» – « Сохранить конфигурацию во FLASH».

Для перезапуска ПО устройства необходимо выбрать меню «Сервис» – «Перезапуск ПО».

Для полного перезапуска устройства необходимо выбрать меню «Сервис» – «Перезапуск устройства».

Для принудительной пересинхронизации времени от NTP-сервера необходимо выбрать меню «Сервис» – «Перезапуск NTP клиента».

Для считывания/записи основного файла конфигурации устройства необходимо выбрать меню «Сервис» – «Управление файлами конфигурации».

Для ручной настройки локальных даты и времени на устройстве необходимо выбрать меню «Сервис» – «Установка даты и времени», см. пункт 4.1.17.

4.1.17 Установка даты и времени

В соответствующем поле возможно задать системное время в формате ЧЧ:ММ и дату в формате ДД.месяц.ГГГГ.

Для сохранения настроек следует воспользоваться кнопкой «Применить».

По нажатию на кнопку «Синхронизировать» происходит синхронизация системного времени устройства с текущим временем на локальном компьютере.

4.1.18 Обновление ПО через web-интерфейс

Для обновления ПО устройства необходимо использовать меню «Сервис» – «Обновление ПО».

Откроется форма для загрузки файлов ПО на устройство:

- Обновление firmware – обновляет ПО управляющей программы и/или ядро Linux.
Для обновления ПО необходимо в поле «Файл прошивки» при помощи кнопки «Обзор» указать название файла для обновления и нажать кнопку «Загрузить». После завершения операции – перезагрузить устройство через меню «Сервис» – «Перезапуск устройства».

4.1.19 Обновление лицензии

Для обновления/ добавления лицензий необходимо получить файл лицензии, обратившись в коммерческий отдел ООО «Предприятие «ЭЛТЕК» по адресу eltex@eltex.nsk.ru или по телефону +7(383) 274-48-48, указав серийный номер и MAC-адрес устройства (см. раздел 4.1.22).

Далее в меню «Сервис» выбрать параметр «Обновление лицензии».

С помощью кнопки «Выберите файл» указать путь к файлу лицензии, полученному от производителя, и обновить, нажав «Обновить».

Для обновления файла лицензии требуется подтверждение.

После завершения операции будет предложено перезагрузить устройство либо это необходимо сделать через меню «Сервис» – «Перезапуск устройства».

4.1.20 Меню «Помощь»

Меню предоставляет сведения о версии WEB-конфигуратора («О программе») и о текущей версии программного обеспечения, заводские параметры и другую системную информацию («Информация о системе»).
4.1.21 Установка пароля для доступа через WEB конфигurator

Установить пароль администратора веб-интерфейса:
Для смены пароля администратора необходимо ввести новый пароль в поле «Введите пароль», в поле «Подтвердите новый пароль» повторить новый пароль. Нажать кнопку «Установить» для применения пароля.

Для сохранения конфигурации необходимо использовать меню «Сервис» — «Сохранить конфигурацию».

Пользователи веб-интерфейса:
Данный блок предназначен для настройки ограничения доступа к веб-интерфейсу на уровне пользователей. В системе всегда есть администратор, который может добавлять и удалять пользователей, а также назначать уровень доступа.
Для создания, редактирования и удаления пользователя используются кнопки:
- Текст — «Добавить пользователя»;
- Текст — «Редактировать параметры пользователя»;
- Текст — «Удалить пользователя».

Изменять права доступа администратора и удалять его из списка пользователей программа не позволяет, что обеспечивает гарантированный вход в программу администратора системы.

Для сохранения конфигурации необходимо использовать меню «Сервис» — «Сохранить конфигурацию».

Установить пароль администратора для telnet и ssh:
Данный блок предназначен для изменения пароля доступа через telnet, ssh и консоль.
Для смены пароля необходимо ввести новый пароль в поле «Введите пароль», в поле «Подтвердите новый пароль» повторить новый пароль. Нажать кнопку «Установить» для применения пароля.

- [имя пользователя] — имя пользователя для входа в web-интерфейс;
- [группа] — тип группы пользователей. Данный параметр должен иметь значение webs;
- [введите пароль] — пароль для доступа в web-интерфейс;
- [подтвердите пароль] — подтвердите пароль для доступа в web-интерфейс;

Для сохранения конфигурации необходимо использовать меню «Сервис» — «Сохранить конфигурацию».
4.1.22 Просмотр заводских параметров и информации о системе

Для просмотра необходимо использовать меню «Помощь» – «Информация о системе».

Заводские параметры также указаны в шильде (наклейке) на нижней части корпуса изделия.

Подробная информация о системе (заводские параметры, версия SIP-адаптера, текущая дата и время, время в работе, сетевые настройки, температура внутри корпуса) доступна по нажатию на ссылку «Информация о системе» на панели управления.

![Информация о системе](image)

4.1.23 Выход из конфигуратора

При нажатии на ссылку «Выход» осуществляется выход из конфигуратора, после чего в браузере отобразится следующее окно:

![Окно выхода из конфигуратора](image)

Для возобновления доступа необходимо указать установленные имя пользователя и пароль и нажать кнопку «Войти». По нажатию кнопки «Отмена» осуществляется выход из программы конфигурирования.

4.2 Командная строка, перечень поддерживаемых команд и ключей

В SMG предусмотрено несколько отладочных терминалов, каждый из них выполняет определенную функцию:

- Терминал (com-порт) – предназначен для конфигурирования устройства посредством интерфейса командной строки CLI и смены программного обеспечения;
- Telnet порт 23 – дубликат терминала (com-порт);
- SSH порт 22 – дубликат терминала (com-порт).
4.2.1 Система команд для работы со шлюзом SMG в режиме отладки

Для перехода в отладочный режим необходимо подключиться к интерфейсу командной строки CLI и ввести команду `tracemode`.

<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>просмотр списка доступных команд</td>
</tr>
<tr>
<td>quit</td>
<td>выход из отладочного режима</td>
</tr>
<tr>
<td>logout</td>
<td>выход из отладочного режима</td>
</tr>
<tr>
<td>exit</td>
<td>выход из отладочного режима</td>
</tr>
<tr>
<td>history</td>
<td>вывод списка ранее введенных команд</td>
</tr>
<tr>
<td>radact [on/off]</td>
<td>включение/ выключение RADIUS</td>
</tr>
<tr>
<td>radshow</td>
<td>просмотр списка запросов к RADIUS-серверу</td>
</tr>
<tr>
<td>rstat</td>
<td>просмотр статистики работы по протоколу RADIUS</td>
</tr>
<tr>
<td>msploopext</td>
<td>устанавливает заворот трафика на VoIP субмодуле для тестирования</td>
</tr>
<tr>
<td></td>
<td>прохождения пакетов через него, генерация пакетов осуществляется</td>
</tr>
<tr>
<td></td>
<td>внешним устройством</td>
</tr>
<tr>
<td>msploopint</td>
<td>устанавливает заворот трафика на VoIP субмодуле для тестирования</td>
</tr>
<tr>
<td></td>
<td>прохождения пакетов через него, генерация пакетов осуществляется локально</td>
</tr>
<tr>
<td></td>
<td>на SMG</td>
</tr>
<tr>
<td>msploopstop</td>
<td>снимает заворот трафика на VoIP субмодуле</td>
</tr>
<tr>
<td>q931timers</td>
<td>просмотр значений таймеров Q.931</td>
</tr>
<tr>
<td>resolve</td>
<td>проверка разрешения доменов имен. Параметр: доменное имя</td>
</tr>
<tr>
<td>route</td>
<td>просмотр информации о сетевых маршрутах, обрабатываемых телефонией</td>
</tr>
<tr>
<td>netiface</td>
<td>Информация о сетевом интерфейсе</td>
</tr>
<tr>
<td>showcalf</td>
<td>просмотр информации о текущих активных вызовах</td>
</tr>
<tr>
<td>license</td>
<td>просмотр информации о текущих активных лицензиях</td>
</tr>
<tr>
<td>msppling [on/off] [idx]</td>
<td>включение/ выключение запроса сигнального процессора, idx – номер</td>
</tr>
<tr>
<td></td>
<td>сигнального процессора – 0</td>
</tr>
<tr>
<td>stream [stream]</td>
<td>просмотр состояния потоков E1 либо состояния конкретного потока, stream –</td>
</tr>
<tr>
<td></td>
<td>номер потока 0..3</td>
</tr>
<tr>
<td>e1stat <stream></td>
<td>просмотр счетчиков потока E1</td>
</tr>
<tr>
<td>e1chip</td>
<td>версия и тип чипа обрабатывающего потока E1</td>
</tr>
<tr>
<td>alarm</td>
<td>просмотр информации о журнале аварий</td>
</tr>
<tr>
<td>sync</td>
<td>просмотр информации об источниках синхронизации</td>
</tr>
<tr>
<td>syncfreq</td>
<td>просмотр информации о частотах синхронизации</td>
</tr>
<tr>
<td>setsync</td>
<td>принудительная смена источника синхронизации. Параметр – <номер потока></td>
</tr>
<tr>
<td>checkmod</td>
<td>проверка срабатывания модификатора номеров по определенному номеру.</td>
</tr>
<tr>
<td></td>
<td>Параметры: <таблица модификатора> <проверяемый телефонный номер></td>
</tr>
<tr>
<td>cic <linkset></td>
<td>просмотр пространства каналов в группе линий, <linkset> – номер группы линий</td>
</tr>
<tr>
<td>checknum</td>
<td>проверка номера по плану нумерации</td>
</tr>
<tr>
<td>cfg_read</td>
<td>применение текущей конфигурации, данная команда приводит к сбросу и</td>
</tr>
<tr>
<td></td>
<td>повторной инициализации потоков E1</td>
</tr>
<tr>
<td>callref</td>
<td>вывод информации об активных SIP вызовах</td>
</tr>
<tr>
<td>rtpdebug <level></td>
<td>включение отладки RTP свича, <level> – уровень отладки</td>
</tr>
<tr>
<td></td>
<td>ВНИМАНИЕ! Использование данной команды может привести к зависанию</td>
</tr>
<tr>
<td></td>
<td>шлюза при работе под нагрузкой</td>
</tr>
<tr>
<td>mspcpports</td>
<td>просмотр состояния RTP портов</td>
</tr>
<tr>
<td>mspshow/mspcshow</td>
<td>просмотр статистики соединений на сигнальном процессоре</td>
</tr>
<tr>
<td>mspreglog</td>
<td>включение трассировки команд сигнального процессора</td>
</tr>
<tr>
<td>mspunreglog</td>
<td>выключение трассировки команд сигнального процессора</td>
</tr>
<tr>
<td>talk</td>
<td>просмотр статистики по вызовах</td>
</tr>
</tbody>
</table>
Цифровой шлюз SMG

4.2.2 Команды трассировки, доступные через отладочный порт

4.2.2.1 Глобальное включение отладки

Синтаксис команды: trace start

4.2.2.2 Глобальное выключение отладки

Синтаксис команды: trace stop

4.2.2.3 Включение/выключения отладки для определенных аргументов

Синтаксис команды: trace <POINT> on/off <IDX> <LEVEL>

Параметры:

- <POINT> - аргумент;
- <IDX> - числовой параметр;
- <LEVEL> - уровень отладки;

Допустимые аргументы (<POINT>):

<table>
<thead>
<tr>
<th>Значение</th>
<th>Расшифровка команды</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>hwpkt</td>
<td>трассировка содержимого пакетов первого уровня обмена основного приложения с драйвером потока Е1</td>
<td>0..3</td>
</tr>
<tr>
<td>stream</td>
<td>трассировка потока Е1</td>
<td>0..3</td>
</tr>
<tr>
<td>port</td>
<td>трассировка работы приложения</td>
<td>не используется</td>
</tr>
<tr>
<td>isup</td>
<td>трассировка работы подсистемы ISUP протокола ОКС-7</td>
<td>не используется</td>
</tr>
<tr>
<td>mtp3</td>
<td>трассировка работы уровня MTP3 протокола ОКС-7 по потоку Е1</td>
<td>0..3</td>
</tr>
<tr>
<td>sipt</td>
<td>трассировка работы протокола SIP/T-I</td>
<td>не используется</td>
</tr>
<tr>
<td>pril3</td>
<td>трассировка работы третьего уровня протокола DSS1 по потоку Е1</td>
<td>0..3</td>
</tr>
<tr>
<td>sw</td>
<td>трассировка работы коммутационного поля</td>
<td>не используется</td>
</tr>
<tr>
<td>mspc</td>
<td>трассировка IP проключений</td>
<td>не используется</td>
</tr>
<tr>
<td>mspd</td>
<td>трассировка работы сигнального процессора</td>
<td>0</td>
</tr>
<tr>
<td>net</td>
<td>трассировка работы сети передачи данных 2-го уровня</td>
<td>не используется</td>
</tr>
<tr>
<td>sync</td>
<td>трассировка работы источников синхронизации</td>
<td>не используется</td>
</tr>
<tr>
<td>erl1</td>
<td>низкоуровневая трассировка системы передачи сообщений между приложением и SIP-модулем</td>
<td>не используется</td>
</tr>
<tr>
<td>erl3</td>
<td>высокоуровневая трассировка системы передачи сообщений между приложением и SIP-модулем</td>
<td>не используется</td>
</tr>
<tr>
<td>smtp</td>
<td>трассировка работы SNMP протокола</td>
<td>не используется</td>
</tr>
<tr>
<td>np</td>
<td>трассировка работы плана нумерации (маршрутизации)</td>
<td>не используется</td>
</tr>
</tbody>
</table>
4.3 Настройка SMG через Telnet, SSH или RS-232

Конфигурация устройства хранится в текстовом виде в файлах, находящихся в каталоге /etc/config, которые можно редактировать с помощью встроенного текстового редактора joe (такие изменения вступят в силу после перезагрузки устройства).

Изменения конфигурации, выполненные через CLI (Command Line Interface) или Web-конфигуратор, применяются непосредственно после совершения.

Для сохранения конфигурации в энергонезависимую память устройства необходимо выполнить команду save.

При первом запуске имя пользователя: admin, пароль: rootpasswd.

Ниже представлен полный перечень команд в алфавитном порядке

4.3.1 Перечень команд CLI

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>alarm global</td>
<td></td>
<td></td>
<td>Показать информацию о текущих авариях</td>
</tr>
<tr>
<td>alarm list clear</td>
<td></td>
<td></td>
<td>Очистить журнал аварийных событий</td>
</tr>
<tr>
<td>alarm list show</td>
<td></td>
<td></td>
<td>Показать журнал аварийных событий с указанием типа и статуса аварии, времени возникновения и параметров локализации.</td>
</tr>
<tr>
<td>Config</td>
<td></td>
<td></td>
<td>Переход в режим конфигурирования параметров устройства</td>
</tr>
<tr>
<td>CPU load statistic</td>
<td></td>
<td></td>
<td>Показать статистику загрузки CPU за последнюю минуту</td>
</tr>
<tr>
<td>date</td>
<td><DAY></td>
<td>1-31</td>
<td>Установить локальные дату и время на устройстве.</td>
</tr>
<tr>
<td></td>
<td><MONTH></td>
<td>1-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td><YEAR></td>
<td>2011-2037</td>
<td></td>
</tr>
<tr>
<td></td>
<td><HOURS></td>
<td>00-23</td>
<td></td>
</tr>
<tr>
<td></td>
<td><MINS></td>
<td>00-59</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>firmware update tftp</td>
<td><FILE></td>
<td>имя файла с ПО</td>
<td>Обновление программного обеспечения без автоматической перезагрузки шлюза</td>
</tr>
<tr>
<td></td>
<td><SERVERIP></td>
<td>IP- адрес в формате AAA.BBB.CCC.DDD</td>
<td>FILE – имя файла с ПО</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SERVERIP – IP-адрес TFTP сервера</td>
</tr>
<tr>
<td>firmware update ftp</td>
<td><FILE></td>
<td>имя файла с ПО</td>
<td>Обновление программного обеспечения без автоматической перезагрузки шлюза</td>
</tr>
<tr>
<td></td>
<td><SERVERIP></td>
<td>IP- адрес в формате AAA.BBB.CCC.DDD</td>
<td>FILE – имя файла с ПО</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SERVERIP – IP-адрес FTP сервера</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>firmware update usb</td>
<td>Обновление программного обеспечения без автоматической перезагрузки шлюза</td>
<td><code><FILE></code> имя файла с ПО</td>
<td></td>
</tr>
<tr>
<td>firmware update_and_reboot tftp</td>
<td>Обновление программного обеспечения с автоматической перезагрузкой шлюза</td>
<td><code><FILE></code> имя файла с ПО <code><SERVERIP></code> IP-адрес в формате AAA.BBB.CCC.DDD</td>
<td></td>
</tr>
<tr>
<td>firmware update_and_reboot ftp</td>
<td>Обновление программного обеспечения с автоматической перезагрузкой шлюза</td>
<td><code><FILE></code> имя файла с ПО <code><SERVERIP></code> IP-адрес в формате AAA.BBB.CCC.DDD</td>
<td></td>
</tr>
<tr>
<td>firmware update_and_reboot usb</td>
<td>Обновление программного обеспечения с автоматической перезагрузкой шлюза</td>
<td><code><FILE></code> имя файла с ПО</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>Просмотр истории о введенных командах</td>
<td></td>
<td></td>
</tr>
<tr>
<td>license demo</td>
<td>Проверить наличие лицензий на устройстве</td>
<td><code><ON_OFF></code> SIP-Registrar/SORM on/off</td>
<td></td>
</tr>
<tr>
<td>license download</td>
<td>Загрузить файл лицензии с указанного адреса</td>
<td><code><FILE></code> имя файла лицензии <code><SERVERIP></code> IP-адрес сервера в формате AAA.BBB.CCC.DDD</td>
<td></td>
</tr>
<tr>
<td>license reset</td>
<td>Сбросить лицензию</td>
<td><code><YES_NO></code> no/yes</td>
<td></td>
</tr>
<tr>
<td>license update</td>
<td>Обновить лицензию</td>
<td></td>
<td></td>
</tr>
<tr>
<td>management</td>
<td>Перейти в режим управления потоками OKC-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>md5sum</td>
<td>Расчет MD5 суммы для файла из папки /tmp/log</td>
<td><code><FILE></code> имя файла</td>
<td></td>
</tr>
<tr>
<td>number check</td>
<td>Проверка возможности маршрутизации по данному номеру. Проверка осуществляется по маскам вызывающего и вызываемого абонентов, а также по базе сконфигурированных SIP-абонентов. В результате проверки выводятся данные о возможности маршрутизации по данному номеру в заданном плане нумерации: calling-table – маршрутизация по таблице вызывающих абонентов; called-table – маршрутизация по таблице вызываемых абонентов; NOT found in – маршрутизация по данной таблице невозможна; found in – маршрутизация по данной таблице возможна; Prefix (6) – Маршрутизация по префиксу [номер префикса в списке]</td>
<td><code><NUMPLAN></code> N 0-15 <code><NUMBER></code> строка длинной не более 31 символа <code><COMPLETE></code> yes/no</td>
<td></td>
</tr>
<tr>
<td>password</td>
<td>Смена пароля для доступа через CLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pcmdump</td>
<td>Собрать пакеты с указанного потока E1. STREAM – номер потока для захвата; FILE – файл для записи</td>
<td><code><STREAM></code> N 0-15 <code><FILE></code> строка</td>
<td></td>
</tr>
<tr>
<td>Команда</td>
<td>Описание</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quit</td>
<td>Завершить данную сессию CLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reboot</td>
<td>Перезагрузить устройство</td>
<td></td>
<td></td>
</tr>
<tr>
<td>save</td>
<td>Записать текущую конфигурацию в энергонезависимую память устройства</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show</td>
<td>Показать системную информацию</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show env</td>
<td>Показать данные с датчиков температуры</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sntp retry</td>
<td>Отправка SNTP запроса к серверу для синхронизации времени</td>
<td></td>
<td></td>
</tr>
<tr>
<td>statistic</td>
<td>Переход в режим просмотра статистики</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcpdump</td>
<td>Захватить пакеты с Ethernet-устройства</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tftp put</td>
<td>Получить файл по TFTP. Команда предназначена для скачивания трассировок, снятых командами tcpdump и pcmdump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timezone set</td>
<td>Задать часовой пояс относительно UTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tracemode</td>
<td>Переход в режим снятия трассировки</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3.2 Смена пароля для доступа к устройству через CLI

Поскольку к шлюзу можно удаленно подключиться через Telnet, то во избежание несанкционированного доступа рекомендуется сменить пароль для пользователя admin.

Для этого необходимо:

1) Подключиться к шлюзу через CLI, авторизоваться по логину/паролю, ввести команду password и нажать клавишу <Enter>

2) Ввести новый пароль:
New password:

3) Повторить введенный пароль:
Retype password:

4) Сохранить конфигурацию во Flash: ввести команду save и нажать клавишу <Enter>

4.3.3 Режим «Статистика»

В данном режиме доступен просмотр статистических данных в соответствии с таблицами рекомендации Q.752 MCЭ-Т.
4.3.3.1 Вход в режим просмотра статистики
Синтаксис команды: statistic

4.3.3.2 Переход в режим просмотра объема сигнального трафика MTP (ОКС-7)
Синтаксис команды: mtp
Результат выполнения: Change to MTP statistic mode
SMG4-[STAT]-[MTP]>

4.3.3.3 Параметры, используемые в командах просмотра статистики трафика MTP

<table>
<thead>
<tr>
<th>Синтаксис команды</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td><LINK></td>
<td>номер потока E1;</td>
</tr>
<tr>
<td><LINKSET></td>
<td>номер группы линий ОКС-7;</td>
</tr>
<tr>
<td><TIME1></td>
<td>промежуток времени, за который выводится статистика (часы);</td>
</tr>
<tr>
<td><TIME2></td>
<td>промежуток времени, за который выводится статистика (минуты);</td>
</tr>
</tbody>
</table>

4.3.3.4 Просмотр общего состояния трафика MTP
Синтаксис команды: signalling link allstat <LINK> <TIME1> <TIME2>
Пример: SMG4-[STAT]-[MTP]> signalling link allstat 8 12 0
Расшифровка: Выводится статистика по всем таблицам для 8-го потока E1 за 12 часов 00 минут.

4.3.3.5 Просмотр сигнального трафика (MTP message accounting)
Рекомендация Q.752 МСЭ-Т, Таблица 15
Синтаксис команды: message accounting <LINK> <TIME1> <TIME2>
Пример: SMG4-[STAT]-[MTP]> message accounting 8 12 0
Результат выполнения:

<table>
<thead>
<tr>
<th>SS7 MTP message accounting, Link 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period: 00:00:00 - 00:00:00 (0 sec)</td>
</tr>
<tr>
<td>Messages</td>
</tr>
<tr>
<td>Received</td>
</tr>
<tr>
<td>Transmitted</td>
</tr>
</tbody>
</table>

Расшифровка: Выводится объём сигнального трафика MTP для 8-го потока E1 за 12 часов 00 минут.

4.3.3.6 Просмотр счетчиков неисправностей и производительности сигнального звена (MTP signalling link faults and performance)
Рекомендация Q.752 МСЭ-Т, Таблица 1
Синтаксис команды: signalling link faults_and_performance <LINK> <TIME1> <TIME2>
Пример:
SMG4-[STAT]-[MTP]> signalling link faults_and_performance 8 12 0

Результат выполнения:

```
+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+
| MTP SL faults and performance. Link 08       | Period: 00:00:00 – 00:00:00 ( 0 sec)          | Duration the In-service state 0 sec           |
+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+
| SL failure events all reasons 0              | Number of SU received in error 0              |
+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+
```

Расшифровка: Выводятся счетчики неисправностей и производительности сигнального звена для 8-го потока E1 за 12 часов 00 минут.

4.3.3.7 Просмотр времени недоступности сигнального звена (MTP signalling link availability)

Рекомендация Q.752 МСЭ-Т, Таблица 2

Синтаксис команды: signalling link availability <LINK> <TIME1> <TIME2>

Пример:
SMG4-[STAT]-[MTP]> signalling link availability 8 12 0

Результат выполнения:

```
+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+
| MTP SL availability. Link 08                | Period: 00:00:00 – 00:00:00 ( 0 sec)          | Duration of SL unavailability 0 sec          |
+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+
```

Расшифровка: Выводится длительность недоступности звена сигнализации по любой причине для 8-го потока E1 за 12 часов 00 минут.

4.3.3.8 Просмотр показателей использования сигнального звена (MTP signalling link utilization)

Рекомендация Q.752 МСЭ-Т, Таблица 3

Синтаксис команды: signalling link utilization <LINK> <TIME1> <TIME2>

Пример:
SMG4-[STAT]-[MTP]> signalling link utilization 8 12 0

Результат выполнения:

```
+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+
| MTP SL utilization. Link 08                 | Period: 00:00:00 – 00:00:00 ( 0 sec)          | SIF and SIO octets transmitted 0            |
+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+
| SIF and SIO octets received 0              |
+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+-----------------------------------------------+
```
| MSUs discarded due congestion | 0 |

Расшифровка: Выводятся показатели использования звена сигнализации для 8-го потока E1 за 12 часов 00 минут

4.3.3.9 Просмотр показателей доступности группы линий (MTP signalling link set and route set availability)

Рекомендация Q.752 МСЭ-Т, Таблица 4

Синтаксис команды: `signalling link availability <LINKSET> <TIME1> <TIME2>`

Пример: `SMG4-[STAT]-[MTP] > signalling link availability 0 12 0`

Результат выполнения:

<table>
<thead>
<tr>
<th>MTP SL utilization.</th>
<th>Link 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period: 00:00:00 - 00:00:00 (0 sec)</td>
<td></td>
</tr>
<tr>
<td>SIF and SIO octets transmitted</td>
<td>0</td>
</tr>
<tr>
<td>SIF and SIO octets received</td>
<td>0</td>
</tr>
<tr>
<td>MSUs discarded due congestion</td>
<td>0</td>
</tr>
</tbody>
</table>

Расшифровка: Выводятся показатели доступности группы линий (линксета) и маршрутов сигнализации для 0-го линксета за 12 часов 00 минут

4.3.3.10 Просмотр состояния пункта сигнализации (MTP signalling point status)

Рекомендация Q.752 МСЭ-Т, Таблица 5

Синтаксис команды: `signalling point status <LINK> <TIME1> <TIME2>`

Пример: `SMG4-[STAT]-[MTP] > signalling point status 8 12 0`

Результат выполнения:

<table>
<thead>
<tr>
<th>MTP signalling point status.</th>
<th>Link 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period: 00:00:00 - 00:00:00 (0 sec)</td>
<td></td>
</tr>
<tr>
<td>Adjacent SP inaccessible</td>
<td>0</td>
</tr>
<tr>
<td>Duration of SP inaccessible</td>
<td>0 sec</td>
</tr>
<tr>
<td>MSUs discarded due error</td>
<td>0</td>
</tr>
</tbody>
</table>

Расшифровка: Выводятся показатели состояния пункта сигнализации для 8-го потока E1 за 12 часов 00 минут
4.3.3.11 Переход в режим просмотра пакетного трафика

Синтаксис команды: `packets`
Результат выполнения: `SMG-[STAT]-[PACKETS]>`

4.3.3.12 Просмотр статистических данных по качеству обслуживания пакетного трафика

Синтаксис команды: `show <TIME1> <TIME2>`

Параметры:
- `<TIME1>` – промежуток времени, за который выводится статистика (часы);
- `<TIME2>` – промежуток времени, за который выводится статистика (минуты);

Пример: `SMG4-[STAT]-[PACKETS]> show 12 0`

Результат выполнения:

```
+---------------------------------------------------+
| Packet statistic                                  |
| +---------------------------------------------------+
| Period: 12:00:17 - 13:22:32 (4935 sec)             |
| | Packets received | 0          |
| | Packets transmitted | 0         |
| | Packets lost | 0            |
| | Packets lost (percentage) | 0.000000 |
| | Packets bad | 0            |
| | Packets bad (percentage) | 0.000000 |
| | Packets trip-time average | 0 ms     |
| | Packets trip-time min | 0 ms      |
| | Packets trip-time max | 0 ms     |
```

Расшифровка: Выводятся статистические данные по качеству обслуживаемого пакетного трафика за 12 часов 00 минут

4.3.4 Режим управления

Для перехода в режим управления потоками E1 необходимо выполнить команду `management`.

Для устройства SMG-4 доступно до 4-х потоков E1. По умолчанию на устройстве SMG-2 доступен только 1 поток E1, для активации второго потока необходимо установить специальную лицензию, подробнее о лицензиях в разделе 4.1.19 Обновление лицензии.

```
SMG4> management
Entering management mode.
SMG4-[MGMT]>
```

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>?</code></td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
<td></td>
<td>Переход на один уровень меню выше</td>
</tr>
</tbody>
</table>
history | <HOST> | строка | Просмотр истории введенных команд
--- | --- | --- | ---
nslookup | <HOST> | | Запросить IP-адрес для хоста с указанным именем
ping host | <HOST> | | Отправить PING-запрос на указанный хост
ping ip | <IP> | | Отправить PING-запрос на указанный IP-адрес
el stat clear | <STREAM> | 0-3 | Сброс статистики на указанном потоке E1
el stat show | <STREAM> | 0-3 | Просмотр статистики на указанном потоке E1
el test remote_loop | <STREAM> | 0-3 | Установка удаленного заворота на указанном потоке E1
el test prbs | <STREAM> | 0-3 | Передать PRBS последовательности на указанном потоке E1
el test prbs_local_loop | <STREAM> | 0-3 | Установка локального заворота и передача PRBS последовательности на указанном потоке E1
el test off | <STREAM> | 0-3 | Выключение заворота на указанным потоке E1
ss7link | <SS7_LINK> | 0-3 | Переход к управлению параметрами указанного потока E1
quit | | | Завершить данную сессию CLI

4.3.4.1 Режим управления потоком ОКС-7

Для перехода в данный режим необходимо в режиме конфигурирования потоков ОКС-7 выполнить команду ss7link <Link>, где <Link> – номер потока ОКС-7, принимает значения из диапазона от 0 до 15.

SMG4-[MGMT]> ss7link 0
E1[0]. Signaling is SS7
SMG4-[MGMT]-[SS7LINK][0]>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
</table>
| ? | | | Показать перечень доступных команд
| chan block | <CHAN_INDEX> | 1-31 | Заблокировать указанный канал (BLO)
| chan group block | <CHAN_INDEX_START > | 1-31 | Заблокировать группу каналов
| | <CHAN_COUNT> | 2-31 | |
| | | | CHAN_INDEX_START начальный номер канала E1 в группе;
| | | | CHAN_COUNT количество каналов в группе
| chan group reset | <CHAN_INDEX_START > | 1-31 | Выполнить сброс группы каналов
| | <CHAN_COUNT> | 2-31 | |
| | | | CHAN_INDEX_START начальный номер канала E1 в группе;
| | | | CHAN_COUNT количество каналов в группе
| chan group unblock | <CHAN_INDEX_START > | 1-31 | Разблокировать группу каналов
| | <CHAN_COUNT> | 2-31 | |
| | | | CHAN_INDEX_START начальный номер канала E1 в группе;
| | | | CHAN_COUNT количество каналов в группе
| chan rel | <CHAN_INDEX> | 1-31 | Разъединить соединение в указанном канале
| chan react | <CHAN_INDEX> | 1-31 | Выполнить сброс указанного канала
| chan rlc | <CHAN_INDEX> | 1-31 | Подтвердить разъединение в указанном канале
| chan unblock | <CHAN_INDEX> | 1-31 | Разблокировать указанный канал
| exit | | | Переход из данного подменю конфигурирования на уровень выше
| link clr outage | | | Снять состояние «Локальный отказ процессора» на потоке
Цифровой шлюз SMG

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>link send LFU</td>
<td></td>
<td></td>
<td>Послать в поток сообщение «вынужденное разрешение звена»</td>
</tr>
<tr>
<td>link send LIN</td>
<td></td>
<td></td>
<td>Послать в поток сообщение «запрещение звена»</td>
</tr>
<tr>
<td>link send LUN</td>
<td></td>
<td></td>
<td>Послать в поток сообщение «разрешение звена»</td>
</tr>
<tr>
<td>link set congestion</td>
<td></td>
<td></td>
<td>Установить на потоке состояние «Перегрузка»</td>
</tr>
<tr>
<td>link set outage</td>
<td></td>
<td></td>
<td>Установить на потоке состояние «Локальный отказ процессора»</td>
</tr>
<tr>
<td>link start emergency</td>
<td></td>
<td></td>
<td>Инициировать аварийный запуск потока</td>
</tr>
<tr>
<td>link start normal</td>
<td></td>
<td></td>
<td>Инициировать нормальный запуск потока</td>
</tr>
<tr>
<td>link stop</td>
<td></td>
<td></td>
<td>Отключить поток</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>show info chan</td>
<td></td>
<td></td>
<td>Показать информацию о состоянии каналов в потоке</td>
</tr>
<tr>
<td>show info link</td>
<td></td>
<td></td>
<td>Показать информацию о состоянии потока</td>
</tr>
</tbody>
</table>

4.3.5 Режим конфигурирования общих параметров устройства

Для перехода к конфигурированию/мониторингу параметров устройства необходимо выполнить команду config.

SMG4> config
Entering configuration mode.
SMG4>{CONFIG}>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>access category</td>
<td></td>
<td></td>
<td>Переход в режим конфигурирования категорий доступа</td>
</tr>
<tr>
<td>alarm set cpu</td>
<td>yes/no</td>
<td></td>
<td>В систему управления будет выдаваться авария о высокой загрузке процессора</td>
</tr>
<tr>
<td>alarm set ram</td>
<td>yes/no</td>
<td></td>
<td>В систему управления будет выдаваться авария о заканчивающейся свободной оперативной памяти</td>
</tr>
<tr>
<td>alarm set drive</td>
<td>yes/no</td>
<td></td>
<td>В систему управления будет выдаваться авария о заканчивающейся свободной памяти на внешнем накопителе</td>
</tr>
<tr>
<td>cdr</td>
<td></td>
<td></td>
<td>Переход в режим конфигурирования параметров записей CDR</td>
</tr>
<tr>
<td>copy running_to_start up</td>
<td></td>
<td></td>
<td>Записать текущую конфигурацию в энергонезависимую память устройства (в стартовую конфигурацию)</td>
</tr>
<tr>
<td>copy startup_to_running</td>
<td></td>
<td></td>
<td>Восстановить текущую конфигурацию из стартовой.</td>
</tr>
<tr>
<td>count linkset</td>
<td></td>
<td></td>
<td>Показать количество групп линий OKC-7</td>
</tr>
<tr>
<td>count trunk</td>
<td></td>
<td></td>
<td>Показать количество транковых групп</td>
</tr>
<tr>
<td>count trunk-direction</td>
<td></td>
<td></td>
<td>Показать количество транковых направлений</td>
</tr>
<tr>
<td>count sipt-interface</td>
<td></td>
<td></td>
<td>Показать количество интерфейсов SIP</td>
</tr>
<tr>
<td>count radius-profile</td>
<td></td>
<td></td>
<td>Показать количество профилей RADIUS</td>
</tr>
<tr>
<td>count modifiers-profile</td>
<td></td>
<td></td>
<td>Показать количество профилей модификаторов</td>
</tr>
<tr>
<td>count sipcause-profile</td>
<td></td>
<td></td>
<td>Показать количество профилей соответствий причин Q,850 ответам SIP</td>
</tr>
<tr>
<td>count routing-profile</td>
<td></td>
<td></td>
<td>Показать количество профилей маршрутизации по расписанию</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>count ss7timers</td>
<td>Показать количество профилей таймеров ОКС-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete linkset</td>
<td>Удалить группу линий ОКС-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete trunk</td>
<td>Удалить транковую группу</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete trunk-direction</td>
<td>Удалить транковое направление</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete sipt-interface</td>
<td>Удалить интерфейс SIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete radius-profile</td>
<td>Удалить профиль RADIUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete modifiers-table</td>
<td>Удалить таблицу модификаторов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete sipcause-profile</td>
<td>Удалить профиль соответствий причин Q.850 ответам SIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete routing-profile</td>
<td>Удалить профиль маршрутизации по расписанию</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete ss7timers</td>
<td>Удалить профиль таймеров ОКС-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>el</td>
<td>Переход в режим конфигурирования выбранного потока E1-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Переход на один уровень меню выше</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fail2ban</td>
<td>Переход в режим конфигурирования Fail2ban</td>
<td></td>
<td></td>
</tr>
<tr>
<td>firewall</td>
<td>Переход в режим конфигурирования firewall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ftpd</td>
<td>Переход в режим конфигурирования ftp-сервера</td>
<td></td>
<td></td>
</tr>
<tr>
<td>history</td>
<td>Просмотр истории введенных команд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hostping</td>
<td>Переход в режим настройки периодического ping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>linkset</td>
<td>Переход в режим конфигурирования групп линий ОКС-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>modifiers table</td>
<td>Переход в режим конфигурирования таблицы модификаторов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>network</td>
<td>Переход в режим конфигурирования сетевых параметров</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new linkset</td>
<td>Создать новую группу линий ОКС-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new trunk</td>
<td>Создать новую транковую группу</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new prefix</td>
<td>Создать новый префикс</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new sipt-interface</td>
<td>Создать новый интерфейс SIP-T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new radius-profile</td>
<td>Создать новый профиль RADIUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new modifiers-table</td>
<td>Создать новую таблицу модификаторов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new sipcause-profile</td>
<td>Создать таблицу соответствия q.850 и sip-reply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new routing-profile</td>
<td>Создать таблицу маршрутизации по расписанию</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new ss7timers</td>
<td>Создать профиль таймеров ОКС-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>numplan</td>
<td>Переход в режим конфигурирования планов нумерации</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ports range</td>
<td>Установить диапазон UDP портов, используемых для передачи разговорного трафика (RTP) и данных по протоколу T.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ports show</td>
<td>Показать конфигурацию UDP портов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ports start</td>
<td>Задать начальный UDP порт, используемый для передачи разговорного трафика (RTP) и данных по протоколу T.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q931-timers</td>
<td>Переход в режим конфигурирования таймеров Q.931</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quit</td>
<td>Завершить данную сессию CLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>radius</td>
<td>Переход в режим конфигурирования RADIUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>route</td>
<td>Переход в режим конфигурирования статических маршрутов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>routing</td>
<td>Переход в режим конфигурирования профилей маршрутизации по расписанию</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show running main by_step</td>
<td>Показать текущую основную конфигурацию по шагам</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show running main whole</td>
<td>Показать текущую основную конфигурацию полностью</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show running network</td>
<td>Показать текущую конфигурацию сети</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show running radius_servers</td>
<td>Показать текущую конфигурацию RADIUS-серверов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show running snmp</td>
<td>Показать текущую конфигурацию SNMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show startup main by_step</td>
<td>Показать начальную основную конфигурацию по шагам</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show startup main whole</td>
<td>Показать начальную основную конфигурацию полностью</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show startup network</td>
<td>Показать начальную конфигурацию сети</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show startup radius_servers</td>
<td>Показать начальную конфигурацию RADIUS-серверов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show startup snmp</td>
<td>Показать начальную конфигурацию SNMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sip configuration</td>
<td>Переход в режим конфигурирования параметров SIP/SIP-T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sip interface</td>
<td>Переход в режим конфигурирования параметров интерфейса SIP/SIP-T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sip cause profile</td>
<td>Переход в режим конфигурирования профилей соответствий причин Q.850 и ответов SIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ss7cat</td>
<td>Переход в режим конфигурирования категорий SS7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ss7timers</td>
<td>Переход в режим конфигурирования таймеров SS7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sync</td>
<td>Переход в режим конфигурирования параметров синхронизации</td>
<td></td>
<td></td>
</tr>
<tr>
<td>syslog</td>
<td>Переход в режим конфигурирования параметров системного журнала</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trunk</td>
<td>Переход в режим конфигурирования транковых групп</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trunk_direction</td>
<td>Переход в режим конфигурирования транковых направлений</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.6 Режим конфигурирования параметров CDR

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду `cdr`.

SMG4-[CONFIG]> cdr

Entering CDR-info mode.

SMG4-[CONFIG]-[CDR]>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>?</code></td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td><code>archive</code></td>
<td><code><all></code></td>
<td></td>
<td>Архивация данных CDR</td>
</tr>
<tr>
<td></td>
<td><code><directory></code></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>category</code></td>
<td><code>save</code></td>
<td><code>yes/no</code></td>
<td>Сохранять/не сохранять категорию абонента в файлах CDR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>config</code></td>
<td></td>
<td></td>
<td>Возврат в меню Configuration</td>
</tr>
<tr>
<td><code>emptysave</code></td>
<td><code><CDR_EMPTY></code></td>
<td><code>yes/no</code></td>
<td>Сохранять/ не сохранять CDR-файлы, не содержащие записей</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>enabled</code></td>
<td><code><CDR></code></td>
<td><code>yes/no</code></td>
<td>Формировать/ не формировать CDR-записи</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
<td></td>
<td>Переход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td><code>ftp enabled</code></td>
<td><code><CDR_FTP_RES></code></td>
<td><code>yes/no</code></td>
<td>Передавать/ не передавать CDR записи на FTP-сервер</td>
</tr>
<tr>
<td><code>ftp login</code></td>
<td><code><CDR_FTPLOGIN_RES></code></td>
<td></td>
<td>Задать имя пользователя для доступа к FTP-сервер</td>
</tr>
<tr>
<td><code>ftp passwd</code></td>
<td><code><CDR_PASSWD_RES></code></td>
<td></td>
<td>Задать пароль пользователя для доступа к FTP-сервер.</td>
</tr>
<tr>
<td><code>ftp path</code></td>
<td><code><CDR_FTPPATH_RES></code></td>
<td></td>
<td>Установить путь к папке на FTP сервере, в которую будут сохраняться CDR записи</td>
</tr>
<tr>
<td><code>ftp port</code></td>
<td><code><CDR_FTPPORT_RES></code></td>
<td></td>
<td>Задать TCP-порт FTP-сервер</td>
</tr>
<tr>
<td><code>ftp server</code></td>
<td><code><CDR_FTPSERVER_RES></code></td>
<td></td>
<td>Задать IP-адрес FTP-сервер</td>
</tr>
<tr>
<td><code>header</code></td>
<td><code><CDR_HEADER></code></td>
<td><code>yes/no</code></td>
<td>Записывать/ не записывать в начало CDR-файл заголовок вида: SMG4. CDR. File started at 'YYYYMMDDhhmmss', где 'YYYYMMDDhhmmss' – время начала сохранения записей в файл</td>
</tr>
<tr>
<td><code>history</code></td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td><code>localdisk</code></td>
<td><code><set></code></td>
<td></td>
<td>Путь к хранению данных CDR на USB накопителе; Просмотр настройки пути хранения данных CDR</td>
</tr>
<tr>
<td></td>
<td><code><show></code></td>
<td><code>/mnt/sd{abc}[1-7]*</code></td>
<td></td>
</tr>
<tr>
<td><code>localkeep period</code></td>
<td><code><day></code></td>
<td><code>0-30</code></td>
<td>Время хранения данных CDR на USB накопителе</td>
</tr>
<tr>
<td></td>
<td><code><hour></code></td>
<td><code>0-23</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code><min></code></td>
<td><code>0-59</code></td>
<td></td>
</tr>
<tr>
<td><code>localsave</code></td>
<td><code><no></code></td>
<td></td>
<td>Сохранять данные CDR на USB накопителе</td>
</tr>
<tr>
<td></td>
<td><code><yes></code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>modifiers table outgoing called</code></td>
<td><code><MODTBL_INDEX></code></td>
<td><code>0-255</code></td>
<td>Установить таблицу модификаторов для вызываемого номера при исходящей связи</td>
</tr>
<tr>
<td><code>modifiers table outgoing calling</code></td>
<td><code><MODTBL_INDEX></code></td>
<td><code>0-255</code></td>
<td>Установить таблицу модификаторов для вызывающего номера при исходящей связи</td>
</tr>
<tr>
<td><code>modifiers table outgoing redirecting</code></td>
<td><code><MODTBL_INDEX></code></td>
<td><code>0-255</code></td>
<td>Установить таблицу модификаторов для передадресующего номера при исходящей связи</td>
</tr>
<tr>
<td><code>modifiers table incoming called</code></td>
<td><code><MODTBL_INDEX></code></td>
<td><code>0-255</code></td>
<td>Установить таблицу модификаторов для вызываемого номера при входящей связи</td>
</tr>
<tr>
<td><code>modifiers table incoming calling</code></td>
<td><code><MODTBL_INDEX></code></td>
<td><code>0-255</code></td>
<td>Установить таблицу модификаторов для вызывающего номера при входящей связи</td>
</tr>
<tr>
<td><code>modifiers table incoming redirecting</code></td>
<td><code><MODTBL_INDEX></code></td>
<td><code>0-255</code></td>
<td>Установить таблицу модификаторов для передадресующего номера при входящей связи</td>
</tr>
</tbody>
</table>
Цифровой шлюз SMG

period day	<CDR_DAY>	0-30	Установить период формирования CDR записей и их сохранения в оперативной памяти устройства, дни
period hour	<CDR_HOUR>	0-23	Установить период формирования CDR записей и их сохранения в оперативной памяти устройства, часы
period min	<CDR_MIN>	0-59	Установить период формирования CDR записей и их сохранения в оперативной памяти устройства, минуты
quit			Завершить данную сессию CLI
redirect mark	<CDR_REDIRECT_MARK>	yes/no	Добавить/не добавлять в запись CDR дополнительное поле «метка переадресации»
redirect save	<CDR_REDIRECT>	yes/no	Добавить в записи CDR дополнительное поле Redirecting number, иначе для переадресованного вызова Redirecting number будет заменять Calling party number
reserved ftp enabled	<CDR_FTP_RES>	yes/no	Передавать/не передавать CDR записи на резервный FTP-сервер
reserved ftp login	<CDR_FTPLOGIN_RES>	строка длиной не более 31 символа	Задать имя пользователя для доступа к резервному FTP-серверу
reserved ftp passwd	<CDR_PASSWD_RES>	строка длиной не более 31 символа	Задать пароль пользователя для доступа к резервному FTP-серверу
reserved ftp path	<CDR_FTPPATH_RES>	строка длиной не более 63 символов	Установить путь к папке на резервном FTP сервере, в которую будут сохраняться CDR записи
reserved ftp port	<CDR_FTPPORT_RES>	1-65535	Задать TCP-порт резервного FTP-сервера
reserved ftp server	<CDR_FTPSERVER_RES>	строка длиной не более 63 символов	Задать IP-адрес резервного FTP-сервера
show			Показать настройки CDR-записей
show_dirs			Показать путь к папке для доступа к FTP-серверу
signature	<CDR_SIGNATURE>	строка длиной не более 63 символов	Указать отличительный признак, по которому можно идентифицировать устройство, создавшее запись
unsuccess	<CDR_UNSUCC>	yes/no	Записывать/не записывать в CDR-файлы неуспехющие вызовы (не окончившиеся разговором)
upload archive ftp/tftp	<ARCHIVE_NAME>	строка длиной не более 63 символов	Отправить архив на FTP/TFTP сервер.

4.3.7 Режим конфигурирования категорий доступа

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду access category.

SMG4-[CONFIG]> access category
Entering Access-Category mode.
SMG4-[CONFIG]-[ACCESS-CAT]>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Переход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>set access</td>
<td><CAT_IDX></td>
<td>0-63</td>
<td>Определить права доступа категорий по отношению друг к другу:</td>
</tr>
<tr>
<td></td>
<td><ACCESS_IDX></td>
<td>0-63</td>
<td>- CAT_IDX – индекс настраиваемой категории</td>
</tr>
<tr>
<td></td>
<td><ACCESSIBLE></td>
<td>enable/disable</td>
<td></td>
</tr>
</tbody>
</table>
4.3.8 Режим конфигурирования потока Е1

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду `e1 <E1_INDEX>`, где `<E1_INDEX>` – номер потока Е1.

```
SMG4-[CONFIG]> e1 0
Entering E1-stream mode.
SMG4-[CONFIG]-E1[0]>
```

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>alarm</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Включить/выключить индикацию аварий данному потоку Е1</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration</td>
</tr>
<tr>
<td>crc4</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Включить/выключить контроль CRC4 данному потоку Е1</td>
</tr>
<tr>
<td>disabled</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Выключить поток из работы</td>
</tr>
<tr>
<td>enabled</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Включить поток в работу</td>
</tr>
<tr>
<td>equalizer</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Включить/выключить усиление сигнала потока Е1</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Переход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>lapd</td>
<td></td>
<td></td>
<td>Переход в режим конфигурирования параметров LAPD для текущего потока Е1</td>
</tr>
<tr>
<td>linecode AMI</td>
<td></td>
<td></td>
<td>Установить на данном потоке тип линейного кодирования AMI</td>
</tr>
<tr>
<td>linecode HDB3</td>
<td></td>
<td></td>
<td>Установить на данном потоке тип линейного кодирования HDB3</td>
</tr>
<tr>
<td>name</td>
<td><NAME></td>
<td></td>
<td>Имя потока Е1</td>
</tr>
<tr>
<td>q931</td>
<td></td>
<td></td>
<td>Переход в режим конфигурирования сигнализации Q931 для текущего потока Е1</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>remalarm</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Включить/выключить индикацию при удаленной аварии на данном потоке</td>
</tr>
<tr>
<td>show</td>
<td></td>
<td></td>
<td>Показать конфигурацию данного потока</td>
</tr>
<tr>
<td>signaling</td>
<td>Signaling type</td>
<td>Q931_USR</td>
<td>Задать тип сигнализации для потока</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q931_NET</td>
<td>Возможные типы сигнализации: Q931_USR, Q931_NET</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SS7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SORM</td>
<td></td>
</tr>
<tr>
<td>slipIND</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Выводить индикацию об аварии в случае возникновения проскальзывания в приемном тракте</td>
</tr>
</tbody>
</table>
Цифровой шлюз SMG

4.3.8.1 Режим конфигурирования параметров LAPD для текущего потока E1

Режим доступен только для сигнализации Q.931 (устанавливается командой signaling). Для перехода в данный режим необходимо в режиме конфигурирования потока E1 выполнить команду lapd.

SMG4-[CONFIG]-E1[0]> lapd
E1[0]. Signaling is Q931
SMG4-[CONFIG]-E1[0]-[LAPD]>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Переход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>N200</td>
<td><N200></td>
<td>0-255</td>
<td>Задать число попыток установления соединения</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>show</td>
<td></td>
<td></td>
<td>Показать конфигурацию LAPD</td>
</tr>
<tr>
<td>t200</td>
<td><T200></td>
<td>0-255</td>
<td>Установить значение таймера T200, x100 мс</td>
</tr>
<tr>
<td>t203</td>
<td><T203></td>
<td>0-255</td>
<td>Установить значение таймера T203, x100 мс</td>
</tr>
</tbody>
</table>

4.3.8.2 Режим конфигурирования сигнализации Q931 для текущего потока E1

Режим доступен только для сигнализации Q.931 (устанавливается командой signaling). Для перехода в данный режим необходимо в режиме конфигурирования потока E1 выполнить команду q931.

SMG4-[CONFIG]-E1[0]> q931
E1[0]. Signaling is Q931
SMG4-[CONFIG]-E1[0]-[Q931]>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>access category</td>
<td><CAT_IDX></td>
<td>0-31</td>
<td>Установить категорию доступа для потока</td>
</tr>
<tr>
<td>categoryAON</td>
<td><CAT_AON></td>
<td>0-15</td>
<td>Установить категорию AON для входящего вызова</td>
</tr>
<tr>
<td>channel</td>
<td><CHAN_NUM></td>
<td>0-31 or 'all' on/off</td>
<td>Включить/выключить указанный канал</td>
</tr>
<tr>
<td>chanorder</td>
<td><CHAN_ORDER></td>
<td>up_ring/down_ring/ up_start/down_start</td>
<td>Задать порядок занятия каналов: up_ring – последовательно вперед; down_ring – последовательно назад; up_start – начиная с первого вперед; down_start – начиная с последнего назад,</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Возврат из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>invokeID</td>
<td><code><INVOKE_ID></code> 1024-65535</td>
<td>Установить начальный идентификатор вызова операции (используется как ссылочный номер для уникальной идентификации вызова операции)</td>
<td></td>
</tr>
<tr>
<td>name coding</td>
<td><code><NAME_CODING></code> transit cp1251 siemens avaya translit</td>
<td>Кодировка, в которой будет передаваться имя абонента. <code>transit</code> – перекодирование не осуществляется (по умолчанию считается, что принято имя в UTF-8); <code>cp1251</code> – кодировка Windows-1251; <code>siemens</code> – кодировка ATC Siemens; <code>avaya</code> – кодировка ATC AVAYA; <code>translit</code> – русские имена будут транслитерироваться латинскими буквами.</td>
<td></td>
</tr>
<tr>
<td>name transmission</td>
<td><code><NAME_TRANS></code> none Q931-DISPLAY QSIG-NA CORNET HICOM-350 AVAYA-DISPLAY</td>
<td>Установить способ передачи имени абонента. <code>none</code> - передача имени отключена; <code>Q931-DISPLAY</code> – в элементе Q.931 Display c Codeset 5; <code>QSIG-NA</code> – передача по протоколу QSIG-NA (ECMA-164); <code>CORNET</code> – передача по протоколу Siemens CorNet; <code>HICOM-350</code> – передача по протоколу Siemens CorNet с дополнительной информацией для АТС Hicom; <code>AVAYA-DISPLAY</code> – передача в элементе Q.931 Display c Codeset 6;</td>
<td></td>
</tr>
<tr>
<td>numbering plan</td>
<td><code><PLAN></code> 0-15</td>
<td>План нумерации по которому будут маршрутизироваться принятые вызовы</td>
<td></td>
</tr>
<tr>
<td>numplan</td>
<td><code><CLD_PLAN_ID></code> unknown/ISDN/telephony/National/Privat</td>
<td>Задать тип плана нумерации. Для использования общепринятого плана нумерации E.164 выберите – ISDN/telephony</td>
<td></td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td>Завершить данную сессию CLI</td>
<td></td>
</tr>
<tr>
<td>RestartChannel</td>
<td><code><SEND></code> send/don't_send</td>
<td>Выдавать/ не выдавать RESTART канала</td>
<td></td>
</tr>
<tr>
<td>RestartInterface</td>
<td><code><SEND></code> send/don't_send</td>
<td>Выдавать/ не выдавать RESTART интерфейса</td>
<td></td>
</tr>
<tr>
<td>RoutingProfile</td>
<td><code><PROF_NUM></code> 0-127</td>
<td>Установка профиля маршрутизации по расписанию</td>
<td></td>
</tr>
<tr>
<td>SendCatAON</td>
<td><code><ON_OFF></code> on/off</td>
<td>Разрешить/запретить передачу категории АОН вызывающего абонента в сообщении SETUP в виде первой цифры номера. Для правильной работы необходима поддержка такого режима на встречной стороне</td>
<td></td>
</tr>
<tr>
<td>SendDialTone</td>
<td><code><ON_OFF></code> on/off</td>
<td>Выдавать/не выдавать в линию сигнал готовности DialTone при входящем overlap-занятии</td>
<td></td>
</tr>
<tr>
<td>SendEndOfDial</td>
<td><code><ON_OFF></code> on/off</td>
<td>Разрешить/запретить передачу сообщения «Конец набора»</td>
<td></td>
</tr>
<tr>
<td>show</td>
<td></td>
<td>Показать конфигурацию параметров сигнализации Q931</td>
<td></td>
</tr>
<tr>
<td>trunk</td>
<td><code><trunk_index></code> 0-31</td>
<td>Задать номер транковой группы для данного потока</td>
<td></td>
</tr>
</tbody>
</table>

4.3.8.3 Режим конфигурирования параметров сигнализации ОКС 7 для текущего потока E1

Режим доступен только для сигнализации SS7 (устанавливается командой `signaling`). Для перехода в данный режим необходимо в режиме конфигурирования потока E1 выполнить команду `ss7`.

```
SMG4-[CONFIG]-E1[0]> ss7
E1[0]. Signaling is SS7
SMG4-[CONFIG]-E1[0]-[SS7]>
```
<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>CIC fill</td>
<td><CIC></td>
<td>0–65535</td>
<td>Задать значение CIC для всех временных слотов, начиная с нулевого</td>
</tr>
<tr>
<td></td>
<td><step></td>
<td>0–255</td>
<td>CIC – стартовый номер CIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>step – номер шаг</td>
</tr>
<tr>
<td>CIC set</td>
<td><TIMESLOT></td>
<td>0–31</td>
<td>Задать значение CIC для единичного таймслота</td>
</tr>
<tr>
<td></td>
<td><CIC></td>
<td>0–65535</td>
<td>TIMESLOT – номер таймслота</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIC – значение CIC</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>Dchan</td>
<td><D_CHAN></td>
<td>0–31</td>
<td>Установить номер D-канала для линии. 0 – не использовать D-канал (разговорный поток)</td>
</tr>
<tr>
<td>DPC MTP3</td>
<td></td>
<td>0–16383</td>
<td>Присвоить значение DPC MTP3 для данного потока</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Переход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>linkset</td>
<td><linkset_index></td>
<td>0–15</td>
<td>Назначить группу линий ОКС 7 для данного потока</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>show</td>
<td></td>
<td></td>
<td>Показать конфигурацию параметров сигнализации ОКС 7</td>
</tr>
<tr>
<td>slc</td>
<td><slc></td>
<td>0–15</td>
<td>Установить идентификатор сигнального канала в группе линий ОКС-7</td>
</tr>
<tr>
<td>transit set active</td>
<td><TIMESLOT></td>
<td>0–31</td>
<td>Установить на канале активный режим транзита, когда SMG инициирует соединения</td>
</tr>
<tr>
<td></td>
<td><YES/NO></td>
<td>yes/no</td>
<td>Вход</td>
</tr>
<tr>
<td>transit set codec</td>
<td><TIMESLOT></td>
<td>0–31</td>
<td>Выбор кодека, используемого для транзита. NONE – выбор режима по-умолчанию, когда согласуются кодеки, назначенные на транзитном SIP-интерфейсе</td>
</tr>
<tr>
<td>transit set remote channel</td>
<td><TIMESLOT></td>
<td>0–31</td>
<td>Выбор удалённого канала</td>
</tr>
<tr>
<td></td>
<td><R_CHANNEL></td>
<td>0–31</td>
<td></td>
</tr>
<tr>
<td>transit set remote stream</td>
<td><TIMESLOT></td>
<td>0–1/0–3</td>
<td>Выбор удалённого потока</td>
</tr>
<tr>
<td></td>
<td><R_STREAM></td>
<td>0–31</td>
<td></td>
</tr>
<tr>
<td>transit set sip_interface</td>
<td><TIMESLOT></td>
<td>0–31/0–3</td>
<td>Выбор SIP-интерфейса, с которого будет производиться транзит</td>
</tr>
<tr>
<td></td>
<td><SIP_IFACE_IDX></td>
<td>0–63</td>
<td></td>
</tr>
<tr>
<td>transit set usage</td>
<td><TIMESLOT></td>
<td>0–31</td>
<td>Включить транзит на выбранном канале</td>
</tr>
<tr>
<td></td>
<td><YES_NO></td>
<td>yes/no</td>
<td></td>
</tr>
</tbody>
</table>

4.3.9 Режим конфигурирования параметров Fail2ban

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду `fail2ban`.

SMG4-[CONFIG]> fail2ban
Entering fail2ban mode.
SMG4-[CONFIG]-[FAIL2BAN]>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>blacklist_ip add</td>
<td><BLACKIP></td>
<td>IP- адрес в формате AAA.BBB.CCC.DDD</td>
<td>Добавить IP-адрес в список адресов, блокируемых Fail2ban</td>
</tr>
<tr>
<td>blacklist_ip remove</td>
<td><BLACKIP></td>
<td>IP- адрес в формате AAA.BBB.CCC.DDD</td>
<td>Удалить IP-адрес из списка адресов, блокируемых Fail2ban</td>
</tr>
<tr>
<td>blacklist_ip show all</td>
<td><COUNT></td>
<td>0–4095</td>
<td>Показать список адресов, блокируемых Fail2ban</td>
</tr>
<tr>
<td>blacklist_ip</td>
<td><COUNT></td>
<td>0–4095</td>
<td>Показать указанное количество из начала</td>
</tr>
</tbody>
</table>

Цифровой шлюз SMG
<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>show first</td>
<td>blacklist_ip</td>
<td><BLACKIP></td>
<td>IP- адрес в формате AAA.BBB.CCC.DDD</td>
</tr>
<tr>
<td>show ip</td>
<td>blacklist_ip</td>
<td><COUNT></td>
<td>0-4095</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>restart</td>
<td>set block_time</td>
<td><BLCKTIME></td>
<td>60-352800</td>
</tr>
<tr>
<td>set enable</td>
<td></td>
<td><ENA></td>
<td>on/off</td>
</tr>
<tr>
<td>set tries</td>
<td></td>
<td><TRIES></td>
<td>1-10</td>
</tr>
<tr>
<td>show</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whitelist_ip add</td>
<td>whitelist_ip</td>
<td><WHITEIP></td>
<td>IP- адрес в формате AAA.BBB.CCC.DDD</td>
</tr>
<tr>
<td>whitelist_ip remove</td>
<td>whitelist_ip</td>
<td><WHITEIP></td>
<td>IP- адрес в формате AAA.BBB.CCC.DDD</td>
</tr>
<tr>
<td>show all</td>
<td>whitelist_ip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show first</td>
<td>whitelist_ip</td>
<td><COUNT></td>
<td>0-4095</td>
</tr>
<tr>
<td>show ip</td>
<td>whitelist_ip</td>
<td><BLACKIP></td>
<td>IP- адрес в формате AAA.BBB.CCC.DDD</td>
</tr>
<tr>
<td>show last</td>
<td>whitelist_ip</td>
<td><COUNT></td>
<td>0-4095</td>
</tr>
</tbody>
</table>

4.3.10 Режим конфигурирования параметров firewall

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду firewall.

SMG4-[CONFIG]> firewall

Entering firewall mode

SMG4-[CONFIG]-[firewall]>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>add profile</td>
<td><PRGF_NAME></td>
<td>разрешено использовать буквы, цифры, символ ' ', максимум 63 символа</td>
<td>Добавить профиль firewall</td>
</tr>
<tr>
<td>add rule</td>
<td><direction></td>
<td>input output enable/disable</td>
<td>Добавить правило firewall</td>
</tr>
<tr>
<td></td>
<td><ENABLE></td>
<td></td>
<td>Направление работы правила</td>
</tr>
<tr>
<td></td>
<td><RULE_NAME></td>
<td>текст, макс. 63 символа</td>
<td>Включение/отключение правила</td>
</tr>
<tr>
<td></td>
<td><S_IP></td>
<td>AAA.BBB.CCC.DDD</td>
<td>Имя правила</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IP-адрес источника</td>
</tr>
<tr>
<td>Поле</td>
<td>Значение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td><S_MASK></td>
<td>AAA.BBB.CCC.DDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td><R_IP></td>
<td>AAA.BBB.CCC.DDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td><R_MASK></td>
<td>AAA.BBB.CCC.DDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td><PROTO></td>
<td>any tcp udp icmp tcp+udp</td>
<td></td>
<td></td>
</tr>
<tr>
<td><S_PORT_START></td>
<td>1-65535</td>
<td></td>
<td></td>
</tr>
<tr>
<td><S_PORT_END></td>
<td>1-65535</td>
<td></td>
<td></td>
</tr>
<tr>
<td><D_PORT_START></td>
<td>1-65535</td>
<td></td>
<td></td>
</tr>
<tr>
<td><D_PORT_END></td>
<td>1-65535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTION</td>
<td>request address-mask-reply accept, drop, reject</td>
<td>Действие – действие выполняемое данным правилом: ACCEPT – пакеты, попадающие под данное правило, будут пропущены сетевым экраном firewall; DROP – пакеты, попадающие под данное правило, будут отброшены сетевым экраном firewall без какого-либо информирования стороны, передавшей пакет; REJECT – пакеты, попадающие под данное правило, будут отброшены сетевым экраном firewall, стороне, передавшей пакет, будет отправлен либо пакет TCP RST, либо ICMP destination unreachable.</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>P_IDX</td>
<td>1-65535</td>
<td>Номер профиля firewall</td>
<td></td>
</tr>
<tr>
<td>apply</td>
<td></td>
<td>Применить настройки firewall</td>
<td></td>
</tr>
<tr>
<td>config</td>
<td></td>
<td>Возврат в меню Configuration</td>
<td></td>
</tr>
<tr>
<td>del profile</td>
<td><ID> 1-65535</td>
<td>Удалить профиль firewall</td>
<td></td>
</tr>
<tr>
<td>del rule</td>
<td><ID> 1-65535</td>
<td>Удалить правило firewall</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td>Выход из данного подменю конфигурирования на уровне выше</td>
<td></td>
</tr>
<tr>
<td>modify profile</td>
<td><ID> 1-65535</td>
<td>Индекс профиля firewall</td>
<td></td>
</tr>
<tr>
<td></td>
<td><NAME></td>
<td>разрешено использовать буквы, цифры, символ ' '. Максимум 63 символ</td>
<td></td>
</tr>
<tr>
<td>modify rule</td>
<td><Type></td>
<td>action dport_end dport_start enable icmp-type name prof_id proto r_ip r_mask s_ip s_mask sport_end sport_start traffic-type</td>
<td>Изменить указанное правило firewall (один из параметров)</td>
</tr>
<tr>
<td></td>
<td><ID> 1-65535</td>
<td>Новое значение согласно данного типа параметра</td>
<td></td>
</tr>
<tr>
<td></td>
<td><param></td>
<td></td>
<td></td>
</tr>
<tr>
<td>move down</td>
<td><ID> 1-65535</td>
<td>Переместить правило вниз на одну позицию</td>
<td></td>
</tr>
<tr>
<td>move up</td>
<td><ID> 1-65535</td>
<td>Переместить правило вверх на одну позицию</td>
<td></td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td>Завершить данную сессию CLI</td>
<td></td>
</tr>
<tr>
<td>set eth</td>
<td><PROFILE ID> 0-65535</td>
<td>Назначить правило на сетевой интерфейс PROFILE ID = 0 означает, что профиль не используется</td>
<td></td>
</tr>
<tr>
<td>set pptp</td>
<td><PPP_IDX> 0-5 0-65535</td>
<td>Назначить правило на интерфейс PROFILE ID = 0 означает, что профиль не используется</td>
<td></td>
</tr>
<tr>
<td>set vlan</td>
<td><VLAN_IDX> VLAN1...VLAN8 <PROFILE ID> 0-65535</td>
<td>Назначить правило на VLAN PROFILE ID = 0 означает, что профиль не используется</td>
<td></td>
</tr>
</tbody>
</table>
4.3.10.1 Режим конфигурирования параметров FTP

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду ftpd.

SMG4-[CONFIG]> ftpd
Entering ftpd mode.
SMG4-[CONFIG]-[FTPd]>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Выход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>set enable</td>
<td><EN></td>
<td>on/off</td>
<td>включить/отключить FTP-сервер</td>
</tr>
<tr>
<td>set port</td>
<td><PORT></td>
<td>1-65535</td>
<td>Задать порт для FTP-сервер</td>
</tr>
<tr>
<td>set interface</td>
<td><IFACE_NAME></td>
<td></td>
<td>Задать сетевой интерфейс для FTP-сервер</td>
</tr>
<tr>
<td>set timeout idle</td>
<td><TIME></td>
<td>0-600</td>
<td>Задать таймер неактивности, в секундах</td>
</tr>
<tr>
<td>set timeout login</td>
<td><TIME></td>
<td>0-600</td>
<td>Задать таймер авторизации, в секундах</td>
</tr>
<tr>
<td>show config</td>
<td></td>
<td></td>
<td>Показать конфигурацию FTP-сервер</td>
</tr>
<tr>
<td>show user</td>
<td></td>
<td></td>
<td>Показать конфигурацию пользователей</td>
</tr>
<tr>
<td>user add</td>
<td><USER_NAME></td>
<td></td>
<td>Добавить пользователя</td>
</tr>
<tr>
<td></td>
<td><PASSWD></td>
<td></td>
<td>Задать имя нового пользователя</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Задать пароль нового пользователя</td>
</tr>
<tr>
<td></td>
<td><CDR_ACCESS></td>
<td>no_access</td>
<td>Задать права доступа к каталогу CDR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>w</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rw</td>
<td></td>
</tr>
<tr>
<td></td>
<td><LOG_ACCESS></td>
<td>no_access</td>
<td>Задать права доступа к каталогу LOG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>w</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rw</td>
<td></td>
</tr>
<tr>
<td></td>
<td><MNT_ACCESS></td>
<td>no_access</td>
<td>Задать права доступа к каталогу MNT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>user del</td>
<td><IDX></td>
<td>1-4</td>
<td>Удалить пользователя</td>
</tr>
<tr>
<td>user modify</td>
<td><IDX></td>
<td>0-4</td>
<td>Модифицировать права доступа для указанного пользователя:</td>
</tr>
<tr>
<td>access</td>
<td><CDR_ACCESS></td>
<td>no_access</td>
<td>Настройка доступа к каталогу CDR,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r/w/r</td>
<td>чтение/запись</td>
</tr>
<tr>
<td></td>
<td><LOG_ACCESS></td>
<td>no_access</td>
<td>- Настройка доступа к каталогу log,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r/w/r</td>
<td>чтение/запись;</td>
</tr>
<tr>
<td></td>
<td><MNT_ACCESS></td>
<td>no_access</td>
<td>Настройка доступа к каталогу mnt,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r/w/r</td>
<td>чтение/запись;</td>
</tr>
<tr>
<td>user modify</td>
<td><IDX></td>
<td>0-4</td>
<td>Модифицировать пароль для указанного пользователя.</td>
</tr>
<tr>
<td>password</td>
<td><PASSWD></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.11 Режим конфигурирования группы линий ОКС 7

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду `linkset <LINKSET_INDEX>`, где `<LINKSET_INDEX>` – номер группы линий.

SMG4-[CONFIG]> linkset 0

Entering Linkset-mode.

SMG4-[CONFIG]-LINKSET[0]>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>access category</td>
<td><CAT_IDX></td>
<td>0-31</td>
<td>Назначить категорию доступа для группы линий</td>
</tr>
<tr>
<td>alarm_ind</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Включить/выключить индикацию аварий для данной группы линий ОКС-7</td>
</tr>
<tr>
<td>cci</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Включить поддержку проверки целостности канала в группе линий ОКС-7</td>
</tr>
<tr>
<td>cci frequency</td>
<td><FREQ></td>
<td>0-127</td>
<td>Задать частоту проверок целостности канала при исходящих вызовах через группу линий ОКС-7</td>
</tr>
<tr>
<td>cdpn_digit in IAM</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Отправка первой цифры номера CdPN в сообщении IAM при наборе методом overlap</td>
</tr>
<tr>
<td>chan_order</td>
<td><CHAN_SELECT></td>
<td>up_ring/</td>
<td>Установить порядок занятия каналов для данной группы линий ОКС-7.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>down_ring/</td>
<td>up_start/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>down_start/</td>
<td>odd_up_ring/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>odd_down_ring/</td>
<td>even_up_ring/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>even_down_ring/</td>
<td></td>
</tr>
<tr>
<td>china</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Включить/выключить режим поддержки китайской спецификации протокола ОКС-7</td>
</tr>
<tr>
<td>combined</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Включить/отключить использование комбинированного режима</td>
</tr>
<tr>
<td>config</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Возврат в меню Configuration</td>
</tr>
<tr>
<td>DPC</td>
<td><DPC_ID></td>
<td>0-16383</td>
<td>Установить код встречного пункта сигнализации – DPC</td>
</tr>
<tr>
<td>emergency alignment</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Аварийное фазирование при одном сигнальном линке в линксете</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Переход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>init</td>
<td><INIT_MODE></td>
<td>blocked/</td>
<td>Установить тип инициализации для данной группы линий</td>
</tr>
<tr>
<td></td>
<td></td>
<td>individual-ublock/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>group-unblock/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>group-reset</td>
<td></td>
</tr>
<tr>
<td>interworking</td>
<td><INTERWORK></td>
<td>no_change/</td>
<td>Настроить индикатор наличия взаимодействия с другими системами сигнализации:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no_encountered/</td>
<td>no_change – транслировать значение без изменений из входящего вызова</td>
</tr>
<tr>
<td></td>
<td></td>
<td>encountered</td>
<td>no_encountered – не сообщать о взаимодействии с сетью, которая не</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>поддерживает большинство сервисов, предоставляемых сетью ISDN;</td>
</tr>
</tbody>
</table>
Цифровой шлюз SMG

name	<s_name>	разрешено использовать буквы, цифры, символ _'; максимум 31 символ	Задать имя для данной группы линий
net_ind	<NET_IND>	international/reserved/federal/national	Установить идентификатор сети: international – международная сеть; reserved – резерв; federal – федеральная сеть; national – местная сеть
numbering plan		0-15	Выбор плана нумерации для LinkSet
OPC	<OPC_ID>	0-16383	Установить код собственного пункта сигнализации для данной группы линий ОКС-7
primary linkset	<PRI_LINKSET>	0-3	Выбор первичной группы линий ОКС-7, при работе в комбинированном режиме
quit			Завершить данную сессию CLI
redirection check	<ON_OFF>	on/off	Проверка наличия Redirecting и Original called номеров в IAM при наличии параметра Redirection information
release on suspend	<ON_OFF>	on/off	Выдавать/не выдавать сообщения о разъединении при получении сообщения suspend
reserv linkset	<RES_LINKSET>	0-3	Выбор резервной группы линий ОКС-7
routing_profile	<prof>	0-127	Выбор профиля маршрутизации по расписанию
satellite	<ON_OFF>	on/off	Определяет наличие спутникового канала при работе через данную группу линий ОКС-7
secondary linkset	<SEC_LINKSET>	0-3	Выбор вторичной группы линий ОКС-7, при работе в комбинированном режиме
show			Показать конфигурацию данной группы линий ОКС-7
ss7timers	<index>	0-3	Выбор профиля таймеров ОКС-7
TMR	<TMR>	speech/64kb_unrestricted/3.1KHz_audio	Установить требования к среде передачи (Transmission Medium Requirement) для данной группы линий ОКС-7
trunk	<trunk_index>	0-31	Установить номер транковой группы для данной группы линий ОКС-7

4.3.12 Режим конфигурирования таблицы модификаторов:

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду modifiers table <MODTBL_INDEX>, где <MODTBL_INDEX> – номер таблицы.

SMG4-[CONFIG]-TRUNK[0]> modifiers table
Entering TRUNK-Modifiers mode.
SMG4-[CONFIG]-TRUNK[0]-MODIFIER>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>add</td>
<td><MODIFIER_MASK></td>
<td>маска-модификатор, максимум 255 символов, необходимо заключать в круглые скобки «(» и «)»; правило-модификатор,</td>
<td>Добавить модификатор: MODIFIER_MASK – маска модификатора;</td>
</tr>
<tr>
<td>change aoncat</td>
<td><MODIFIER_INDEX></td>
<td>0-512</td>
<td>Редактировать номер категории АОН для модификатора:</td>
</tr>
<tr>
<td>change called numbering plan type</td>
<td><MODIFIER_INDEX></td>
<td>0-8191</td>
<td>Редактировать тип плана нумерации модификатора для номера вызываемого абонента:</td>
</tr>
<tr>
<td>change called rule</td>
<td><MODIFIER_INDEX></td>
<td>0-8191</td>
<td>Редактировать правило преобразования номера вызываемого для модификатора</td>
</tr>
<tr>
<td>change called type</td>
<td><MODIFIER_INDEX></td>
<td>0-8191</td>
<td>Редактировать тип номера вызываемого абонента для модификатора:</td>
</tr>
</tbody>
</table>

| [CLD_RULE] | максимум 30 символов, необходимо заключить в кавычки | CLD_RULE – правило преобразования номера вызываемого; |
| [CLG_RULE] | правило-modifiable, максимум 30 символов, необходимо заключить в кавычки | CLG_RULE – правило преобразования номера вызываемого. |

<p>| AONCAT | 0-9/any | |
| CALLED_NP_TYPE | nochange; unknown; isdn/telephony; national; private | |
| CALLED_TYPE | unknown/ subscriber/ national/ international/ network_specific/ nochange | |</p>
<table>
<thead>
<tr>
<th>Вариант</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>change calling category</td>
<td>Редактировать номер категории АОН вызывающего абонента для модификатора
<MODIFIER_INDEX><CALLING_CAT_AON> 0-8191 0-9/nochange</td>
</tr>
<tr>
<td>change calling numbering plan type</td>
<td>Редактировать тип плана нумерации модификатора для номера вызывающего абонента:

<MODIFIER_INDEX><CALLING,np_type> 0-8191 nochange/unknown/isdn/telephony/national/private</td>
</tr>
<tr>
<td>change calling presentation</td>
<td>Редактировать правило преобразования представления вызывающего абонента

<MODIFIER_INDEX><CALLING_PRESENT> 0-8191 allowed/restricted/not available/spare/nochange</td>
</tr>
<tr>
<td>change calling rule</td>
<td>Редактировать правило преобразования номера вызывающего для модификатора

<MODIFIER_INDEX><CALLING_RULE> 0-8191 правило-модификатор, максимум 30 символов, необходимо заключать в кавычки.</td>
</tr>
<tr>
<td>change calling screen</td>
<td>Редактировать правило преобразования индикатора экранирования вызывающего абонента

<MODIFIER_INDEX><CALLING_SCREEN> 0-8191 not_screened/user_passed/user_failed/network/nochange</td>
</tr>
<tr>
<td>change calling type</td>
<td>Редактировать тип номера вызывающего абонента для модификатора:

<MODIFIER_INDEX><CALLING_TYPE> 0-8191 unknown/subscriber/national/international/network_specific/nochange</td>
</tr>
<tr>
<td>change general access-cat</td>
<td>Редактировать общую категорию доступа модификатора

<MODIFIER_INDEX><ACCESS> 0-8191 0-31/nochange</td>
</tr>
<tr>
<td>Команда</td>
<td>Синтаксис</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>change general numplan</td>
<td><code><MODIFIER_INDEX></code> <NUMPLAN> 0-8191 0-15/nochange</td>
</tr>
<tr>
<td>change mask</td>
<td><code><MODIFIER_INDEX></code> <MODIFIER_MASK> 0-8191</td>
</tr>
<tr>
<td>change modtable</td>
<td><code><MODIFIER_INDEX></code> <NEW_MODTBL_INDEX> 0-255</td>
</tr>
<tr>
<td>change numtype</td>
<td><code><MODIFIER_INDEX></code> <NUM_TYPE> 0-8191 unknown/subscriber/national/international/network_specific/any</td>
</tr>
<tr>
<td>change type</td>
<td><code><MODIFIER_INDEX></code> <MODIFIER_TYPE> 0-8191 calling/called</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>history</td>
<td></td>
</tr>
<tr>
<td>quit</td>
<td></td>
</tr>
<tr>
<td>remove</td>
<td><code><MODIFIER_INDEX></code> 0-8191</td>
</tr>
<tr>
<td>show</td>
<td><code><MODIFIER_INDEX></code> 0-8191</td>
</tr>
</tbody>
</table>

4.3.13 Режим конфигурирования сетевых параметров

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду `network`.
Цифровой шлюз SMG
<table>
<thead>
<tr>
<th>Команда</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exit</code></td>
<td>Выход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td><code>history</code></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td><code>ntp</code></td>
<td>Переход в режим конфигурирования NTP</td>
</tr>
<tr>
<td><code>pptp start</code> <code><NET_IFACE_IDX></code> <code>0-39</code></td>
<td>Запустить указанный интерфейс</td>
</tr>
<tr>
<td><code>pptp status</code> <code><NET_IFACE_IDX></code> <code>0-39</code></td>
<td>Показать статус указанного интерфейна</td>
</tr>
<tr>
<td><code>pptp stop</code> <code><NET_IFACE_IDX></code> <code>0-39</code></td>
<td>Остановить указанный интерфейн</td>
</tr>
<tr>
<td><code>quit</code></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td><code>remove interface</code> <code><NET_IFACE_IDX></code> <code>0-39</code></td>
<td>Удалить указанный интерфейн</td>
</tr>
<tr>
<td><code>rollback</code></td>
<td>Отменить изменения</td>
</tr>
<tr>
<td><code>set interface broadcast</code> <code><NET_IFACE_IDX></code> <code>0-39</code></td>
<td>Задать адрес для широковещательных пакетов для указанного интерфейса</td>
</tr>
<tr>
<td><code>set interface COS</code> <code><NET_IFACE_IDX></code> <code><COS></code> <code>0-7</code></td>
<td>Назначить приоритет 802.1p для указанного интерфейса</td>
</tr>
<tr>
<td><code>set interface dhcp</code> <code><ON_OFF></code></td>
<td>Получать сетевые настройки динамически от DHCP-сервера для указанного интерфейса</td>
</tr>
<tr>
<td><code>set interface dhcp_dns</code> <code><ON_OFF></code></td>
<td>Получать IP-адрес DNS-сервера динамически от DHCP-сервера для указанного интерфейса</td>
</tr>
<tr>
<td><code>set interface dhcp_no_gw</code> <code><ON_OFF></code></td>
<td>Не получать настройки шлюза динамически от DHCP-сервера для указанного интерфейса</td>
</tr>
<tr>
<td><code>set interface dhcpcp_h6</code> <code><ON_OFF></code></td>
<td>Получать настройки NTP динамически от DHCP-сервера для указанного интерфейса</td>
</tr>
<tr>
<td><code>set interface gw_ignore</code> <code><ON_OFF></code></td>
<td>Игнорировать настройку шлюза для указанного интерфейса</td>
</tr>
<tr>
<td><code>set interface h323</code> <code><ON_OFF></code></td>
<td>Разрешить обмен сигнализацией H323 для указанного интерфейса</td>
</tr>
<tr>
<td><code>set interface ipaddr</code> <code><IPADDR></code> <code><NETMASK></code></td>
<td>Задать IP-адрес и сетевую маску для указанного интерфейса</td>
</tr>
<tr>
<td><code>set interface network-label</code> <code><LABEL></code></td>
<td>Задать имя для данного интерфейна</td>
</tr>
<tr>
<td><code>set interface radius</code> <code><ON_OFF></code></td>
<td>Разрешить передачу сообщений RADIUS через интерфейс</td>
</tr>
<tr>
<td><code>set interface run_at_startup</code> <code><ON_OFF></code></td>
<td>Автоматически запускать интерфейн при старте (только для VPN-интерфейса)</td>
</tr>
<tr>
<td><code>set interface serverip</code> <code><IPADDR></code></td>
<td>Задать IP-адрес PPTP сервера</td>
</tr>
<tr>
<td><code>set interface signaling</code> <code><ON_OFF></code></td>
<td>Разрешить передачу сообщений SIP через интерфейс</td>
</tr>
<tr>
<td>Command</td>
<td>Parameters</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td><code>set interface snmp</code></td>
<td><code><NET_IFACE_IDX></code>, <code><ON_OFF></code></td>
</tr>
<tr>
<td><code>set interface ssh</code></td>
<td><code><NET_IFACE_IDX></code>, <code><ON_OFF></code></td>
</tr>
<tr>
<td><code>set interface telnet</code></td>
<td><code><NET_IFACE_IDX></code>, <code><ON_OFF></code></td>
</tr>
<tr>
<td><code>set interface use_mppe</code></td>
<td><code><NET_IFACE_IDX></code>, <code><ON_OFF></code></td>
</tr>
<tr>
<td><code>set interface user_name</code></td>
<td><code><NET_IFACE_IDX></code>, <code><USER></code></td>
</tr>
<tr>
<td><code>set interface user_pass</code></td>
<td><code><NET_IFACE_IDX></code>, <code><PASS></code></td>
</tr>
<tr>
<td><code>set interface VID</code></td>
<td><code><NET_IFACE_IDX></code>, <code><VID></code></td>
</tr>
<tr>
<td><code>set interface web</code></td>
<td><code><NET_IFACE_IDX></code>, <code><ON_OFF></code></td>
</tr>
<tr>
<td><code>set settings dns primary</code></td>
<td><code><IPADDR></code></td>
</tr>
<tr>
<td><code>set settings dns secondary</code></td>
<td><code><IPADDR></code></td>
</tr>
<tr>
<td><code>set settings gateway</code></td>
<td><code><GATEWAY></code></td>
</tr>
<tr>
<td><code>set settings hostname</code></td>
<td><code><HOSTNAME></code></td>
</tr>
<tr>
<td><code>set settings ssh</code></td>
<td><code><PORT></code></td>
</tr>
<tr>
<td><code>set settings telnet</code></td>
<td><code><PORT></code></td>
</tr>
<tr>
<td><code>set settings use_ip_list</code></td>
<td><code><ON_OFF></code></td>
</tr>
<tr>
<td><code>set settings web</code></td>
<td><code><PORT></code></td>
</tr>
<tr>
<td><code>show interface by_index</code></td>
<td></td>
</tr>
<tr>
<td><code>show interface list</code></td>
<td></td>
</tr>
<tr>
<td><code>show settings</code></td>
<td></td>
</tr>
<tr>
<td><code>snmp</code></td>
<td></td>
</tr>
<tr>
<td><code>ssh restart</code></td>
<td></td>
</tr>
</tbody>
</table>

После изменения IP-адреса, маски сети либо при отключении управления через web-конфигurator на сетевом интерфейсе необходимо подтвердить данные настройки командой confirm, иначе по истечении двухминутного таймера произойдет откат конфигурации на предыдущую.
4.3.13.1 Режим конфигурирования протокола NTP

Для перехода в данный режим необходимо в режиме конфигурирования сетевых параметров выполнить команду ntp.

SMG4-[CONFIG]-NETWORK> ntp
Entering NTP mode.
SMG4-[CONFIG]-NETWORK-NTP>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>apply</td>
<td></td>
<td>no/yes</td>
<td>применить настройки NTP</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Выход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>restart ntp</td>
<td></td>
<td>no/yes</td>
<td>Перезапустить процесс NTP</td>
</tr>
<tr>
<td>set ntp</td>
<td>dhcp</td>
<td>off/on</td>
<td>Получить настройки NTP по DHCP</td>
</tr>
<tr>
<td></td>
<td>period</td>
<td>10-1440</td>
<td>Задать период синхронизации</td>
</tr>
<tr>
<td></td>
<td>server</td>
<td>IP- адрес в формате AAA.BBB.CCC.DDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>usage</td>
<td>off/on</td>
<td>Не использовать/использовать NTP</td>
</tr>
<tr>
<td>show config</td>
<td></td>
<td></td>
<td>Показать</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Задать часовой пояс относительно всемирного координационного времени</td>
</tr>
</tbody>
</table>

4.3.13.2 Режим конфигурирования протокола SNMP

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду snmp.

SMG4-[CONFIG]-NETWORK> snmp
Entering SNMP mode.
SMG4-[CONFIG]-NETWORK-SNMP>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>add</td>
<td><TYPE></td>
<td>trapsink/ trap2sink/ informsink</td>
<td>Добавить правило передачи SNMP тропов: TYPE – тип SNMP сообщения</td>
</tr>
<tr>
<td></td>
<td><IP></td>
<td>IP- адрес в формате AAA.BBB.CCC.DDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td><COMM></td>
<td>строка до 31 символа</td>
<td></td>
</tr>
<tr>
<td></td>
<td><PORT></td>
<td>1-65535</td>
<td>IP – IP-адрес приемника тропов; COMM – пароль, содержащийся в тропах.</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>create user</td>
<td><LOGIN></td>
<td>строка до 31 символа</td>
<td></td>
</tr>
<tr>
<td></td>
<td><PASSWD></td>
<td>пароль от 8 до 31 символа</td>
<td>Создать пользователя (назначить логин и пароль для доступа)</td>
</tr>
<tr>
<td>Команда</td>
<td>Параметр</td>
<td>Значение</td>
<td>Действие</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Выход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>modify community</td>
<td><IDX></td>
<td>0-15</td>
<td>Изменить правило передачи SNMP тропов (пароль, содержащийся в тропах)</td>
</tr>
<tr>
<td></td>
<td><COMM></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>строка до 31 символа</td>
<td></td>
</tr>
<tr>
<td>modify ip</td>
<td><IDX></td>
<td>0-15</td>
<td>Изменить правило передачи SNMP тропов (адрес приемника тропов)</td>
</tr>
<tr>
<td></td>
<td><IP></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP-адрес в формате AAA.BBB.CCC.DDD</td>
<td></td>
</tr>
<tr>
<td>modify port</td>
<td><IDX></td>
<td>0-15</td>
<td>Изменить правило передачи SNMP тропов (порт приемника тропов)</td>
</tr>
<tr>
<td></td>
<td><PORT></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-65535</td>
<td></td>
</tr>
<tr>
<td>modify type</td>
<td><IDX></td>
<td>0-15</td>
<td>Изменить правило передачи SNMP тропов (тип SNMP сообщения)</td>
</tr>
<tr>
<td></td>
<td><TYPE></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trapsink/trap2sink/informsink</td>
<td></td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>remove</td>
<td><IDX></td>
<td>0-15</td>
<td>Удалить правило передачи SNMP тропов</td>
</tr>
<tr>
<td>restart snmpd</td>
<td>Yes/no</td>
<td></td>
<td>Перезапустить SNMP-клиента</td>
</tr>
<tr>
<td>ro</td>
<td><RO></td>
<td></td>
<td>Установить пароль на чтение параметров</td>
</tr>
<tr>
<td></td>
<td></td>
<td>строка длиной до 63 символов</td>
<td></td>
</tr>
<tr>
<td>rw</td>
<td><RW></td>
<td></td>
<td>Установить пароль на чтение и запись параметров</td>
</tr>
<tr>
<td></td>
<td></td>
<td>строка длиной до 63 символов</td>
<td></td>
</tr>
<tr>
<td>show</td>
<td></td>
<td></td>
<td>Показать конфигурацию SNMP</td>
</tr>
<tr>
<td>syscontact</td>
<td><SYSCONTACT></td>
<td></td>
<td>Указать контактную информацию</td>
</tr>
<tr>
<td></td>
<td></td>
<td>строка длиной до 63 символов</td>
<td></td>
</tr>
<tr>
<td>syslocation</td>
<td><SYSLOC></td>
<td></td>
<td>Указать место расположения устройства</td>
</tr>
<tr>
<td></td>
<td></td>
<td>строка длиной до 63 символов</td>
<td></td>
</tr>
<tr>
<td>sysname</td>
<td><SYSNAME></td>
<td></td>
<td>Указать имя устройства</td>
</tr>
<tr>
<td></td>
<td></td>
<td>строка длиной до 63 символов</td>
<td></td>
</tr>
</tbody>
</table>

4.3.14 Режим конфигурирования плана нумерации

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду `numplan`.

`SMG4-[CONFIG]> numplan
Entering Numbering-plan mode.
SMG4-[CONFIG]-[NUMPLAN]>`
<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>set domain</td>
<td><IDX></td>
<td>0-15</td>
<td>Назначить домен для регистрации</td>
</tr>
<tr>
<td></td>
<td><DOMAIN></td>
<td>строка длиной до 15 символов</td>
<td></td>
</tr>
<tr>
<td>set name</td>
<td><IDX></td>
<td>0-15</td>
<td>Установить имя для плана нумерации</td>
</tr>
<tr>
<td></td>
<td><NAME></td>
<td>строка длиной до 15 символов</td>
<td></td>
</tr>
<tr>
<td>show active count</td>
<td></td>
<td></td>
<td>Показать количество активных планов нумерации</td>
</tr>
<tr>
<td>show active list</td>
<td></td>
<td></td>
<td>Показать список активных планов нумерации</td>
</tr>
<tr>
<td>show list</td>
<td></td>
<td></td>
<td>Показать список планов нумерации</td>
</tr>
<tr>
<td>show prefixes</td>
<td><IDX></td>
<td>0-15</td>
<td>Показать префиксы плана нумерации с указанным номером</td>
</tr>
<tr>
<td></td>
<td>no/yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3.14.1 Режим конфигурирования префикса

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду `prefix <PREFIX_INDEX>`, где `<PREFIX_INDEX>` – номер префикса.

```
SMG4-[CONFIG]-[NUMPLAN]> prefix 0
Entering Prefix-mode.
SMG4-[CONFIG]-[NUMPLAN]-PREFIX[0]>
```

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>access category</td>
<td><CAT_IDX></td>
<td>0-31</td>
<td>Назначить категорию доступа для группы линий</td>
</tr>
<tr>
<td>access check</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Проверять/не проверять категорию доступа</td>
</tr>
<tr>
<td>called npi</td>
<td><PFX_CLD_NPI></td>
<td>transit/unknown/isdn/telephony/national/private</td>
<td>Изменить тип номера вызываемого абонента (transit – не преобразовывать)</td>
</tr>
<tr>
<td>called type</td>
<td><PFX_CLD_TYPE></td>
<td>unknown/subscriber/national/international/specific_net/transit</td>
<td>Преобразование типа номера вызываемого абонента (transit – не преобразовывать).</td>
</tr>
</tbody>
</table>

Subscriber number – применяется при обслуживании местных вызовов и входящих междугородных вызовов. При этом передаваемый номер должен иметь вид: `abxxxxx`, либо `bxxxxx`, либо `xxxxxx`;

National number – используется при обслуживании исходящих междугородных вызовов, или местных) и входящих международных вызовов вместо `Subscriber`. При этом передаваемый номер должен иметь вид: `ABCabxxxxx`, либо `2abxxxxx`, либо `10<международный номер>`;

International number – используется на МГ-линиях и ЗСЛ-линиях при обслуживании исходящих международных вызовов.
Цифровой шлюз SMG

<table>
<thead>
<tr>
<th>Опция</th>
<th>Подменю</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>config</td>
<td></td>
<td>Возврат в меню Configuration</td>
</tr>
</tbody>
</table>
| dial mode | <MODE> nochange/enblock/overlap | Задать режим набора по префиксу:
| | | - enblock – номер вызываемого абонента передается блоком; |
| | | - overlap – номер вызываемого абонента передается с |
| | | перекрытием (по одной цифре); |
| | | - nochange – номер вызываемого абонента передается в том виде, в |
| | | каком принят из входящего канала |
| direction | <PFX_DIRECTION> local/Emergency/zone/ | Установить тип доступа к транковой группе:
| | vedomst/toll/international | - local – местный; |
| | | - Emergency – вызов спецслужб; |
| | | - zone – зоновый; |
| | | - vedomst – на ведомственную сеть; |
| | | - toll – междугородная связь; |
| | | - international – международная связь |
| duration | <PFX_DURATION> 0-255 | Установить таймер продолжительности набора номера, в секундах |
| exit | | Выход из данного подменю конфигурирования на уровень выше |
| getCID | <ON_OFF> on/off | Включить/отключить запрос CallerID при маршрутизации по префиксу |
| history | | Просмотр истории введенных команд |
| mask edit | | Перейти в режим редактирования масок префикса |
| mask show | | Показать маски префикса |
| name | <s_name> строка не более 31 символа | Задать имя/обозначение для префикса |
| | (разрешенно использовать буквы, | |
| | цифры и '_') | |
| needCID | <ON_OFF> on/off | Включить/отключить обязательный запрос информации CallerID |
| numplan | <PLAN_IDX> 0-15 | Указать к какому плану нумерации относится префикс |
| notdial ST | <USE_ST> yes/no | Не передавать/передавать признак конца набора (ST – в ОКС или |
| | | sending complete в PRI) |
| priority | <PRIORITY> 0-100 | Установить приоритет для префикса:
| | | - 0 – наивысший приоритет; |
| | | - 100 – наименьший приоритет. |
| quit | | Завершить данную сессию CLI |
| show | | Показать конфигурацию префикса |
| stimer | <PFX_LTIMER> 0-255 | Установить время в секундах, в течение которого транковой шлюз будет |
| | | ожидать продолжения набора, если уже набранный номер совпадает с |
| | | каким-либо образом в плане нумерации, но |
| | | есть возможность получения большего количества цифр, что |
Цифровой шлюз SMG

4.3.14.2 Режим конфигурирования масок префикса

Для перехода в данный режим необходимо в режиме конфигурирования префиксов выполнить команду mask edit.

```
SMG4-[CONFIG]-PREFIX[0]> mask edit
Entering Prefix-Mask mode.
SMG4-[CONFIG]-PREFIX[0]-MASK>
```

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>add</td>
<td><PREFIX_MASK></td>
<td>маска-префикс. максимум 255 символов, необходимо заключить в круглые скобки «(» и «)»</td>
</tr>
<tr>
<td></td>
<td>[PFX_MASK_TYPE]</td>
<td>calling/called [called]</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td>Выход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>modify duration</td>
<td><PREFIX_MASK_INDEX></td>
<td>0-1024</td>
</tr>
<tr>
<td></td>
<td><DURATION></td>
<td>0-255</td>
</tr>
<tr>
<td>modify ltimer</td>
<td><PREFIX_MASK_INDEX></td>
<td>0-1024</td>
</tr>
<tr>
<td></td>
<td><LONG_TIMER></td>
<td>0-255</td>
</tr>
<tr>
<td>modify mask</td>
<td><PREFIX_MASK_INDEX></td>
<td>0-1024</td>
</tr>
<tr>
<td></td>
<td><PREFIX_MASK></td>
<td>маска-префикс. максимум 255 символов, необходимо заключить в круглые скобки «(» и «)»</td>
</tr>
<tr>
<td>modify prefix</td>
<td><PREFIX_MASK_INDEX></td>
<td>0-1024</td>
</tr>
<tr>
<td></td>
<td><PFX_INDEX></td>
<td>0-255</td>
</tr>
</tbody>
</table>

SMG4-[CONFIG]-PREFIX[0]-MASK>
Режим конфигурирования таймеров Q.931

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду `q931-timers`.

SMG4-[CONFIG]> q931-timers
Entering q931-timers mode.
SMG4-[CONFIG]-[q931-T]>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Выход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>set</td>
<td>t301-t322</td>
<td>10-360</td>
<td>Задать значение таймера t301-t322</td>
</tr>
<tr>
<td>show</td>
<td></td>
<td></td>
<td>Показать конфигурацию таймеров Q.931</td>
</tr>
</tbody>
</table>
4.3.16 Режим конфигурирования RADIUS

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду `radius`.

```
SMG4-[CONFIG]> radius
Entering RADIUS mode.
SMG4-[CONFIG]-RADIUS>
```

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>acct ipaddr</td>
<td><IP_ADDR></td>
<td>IP- адрес в формате AAA.BBB.CCC.DDD</td>
<td>Установить IP-адрес сервера учетных записей (Accounting).</td>
</tr>
<tr>
<td></td>
<td><SRV_IDX></td>
<td>0-8</td>
<td>IP_ADDR – IP-адрес; SRV_IDX – номер сервера</td>
</tr>
<tr>
<td>acct port</td>
<td><PORT></td>
<td>0-65535</td>
<td>Установить порт сервера учетных записей (Accounting).</td>
</tr>
<tr>
<td></td>
<td><SRV_IDX></td>
<td>0-8</td>
<td>PORT – номер порта; SRV_IDX – номер сервера</td>
</tr>
<tr>
<td>acct secret</td>
<td><SECRET></td>
<td>строка максимум 31 символов</td>
<td>Установить пароль для сервера учетных записей (Accounting).</td>
</tr>
<tr>
<td></td>
<td><SRV_IDX></td>
<td>0-8</td>
<td>SECRET – пароль; SRV_IDX – номер сервера</td>
</tr>
<tr>
<td>auth ipaddr</td>
<td><IP_ADDR></td>
<td>IP- адрес в формате AAA.BBB.CCC.DDD</td>
<td>Установить IP-адрес сервера авторизации (Authorization).</td>
</tr>
<tr>
<td></td>
<td><SRV_IDX></td>
<td>0-8</td>
<td>IP_ADDR – IP-адрес; SRV_IDX – номер сервера</td>
</tr>
<tr>
<td>auth port</td>
<td><PORT></td>
<td>0-65535</td>
<td>Установить порт сервера авторизации (Authorization).</td>
</tr>
<tr>
<td></td>
<td><SRV_IDX></td>
<td>0-8</td>
<td>PORT – номер порта; SRV_IDX – номер сервера</td>
</tr>
<tr>
<td>auth secret</td>
<td><SECRET></td>
<td>строка максимум 31 символов</td>
<td>Установить пароль для сервера авторизации (Authorization).</td>
</tr>
<tr>
<td></td>
<td><SRV_IDX></td>
<td>0-8</td>
<td>SECRET – пароль; SRV_IDX – номер сервера</td>
</tr>
<tr>
<td>auth user</td>
<td>no/yes</td>
<td></td>
<td>Включение опции авторизации пользователей WEB/Telnet/SSH на RADIUS-сервере</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>deadtime</td>
<td><DEADTIME></td>
<td>0-255</td>
<td>Время неиспользования сервера при сбое – время, в течение которого сервер считается неактивным</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Выход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>iface</td>
<td><IFACE_NAME></td>
<td>строка до 255 символов</td>
<td>Задать сетевой интерфейс для RADIUS</td>
</tr>
<tr>
<td>profile</td>
<td><PROFILE_INDEX></td>
<td>0-31</td>
<td>Переход к конфигурированию параметров профиля RADIUS</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить текущую сессию CLI</td>
</tr>
<tr>
<td>retries</td>
<td><RETRIES></td>
<td>0-255</td>
<td>Установить количество попыток отправки запроса</td>
</tr>
<tr>
<td>show config</td>
<td></td>
<td></td>
<td>Показать информацию о конфигурации RADIUS-серверов</td>
</tr>
</tbody>
</table>
4.3.16.1 Режим конфигурирования параметров профиля RADIUS

Для перехода в данный режим необходимо в режиме конфигурирования RADIUS выполнить команду profile <PROFILE_INDEX>, где <PROFILE_INDEX> – номер профиля RADIUS.

SMG4-[CONFIG]-RADIUS> profile 0
Entering RADIUS-Profile-mode.
SMG4-[CONFIG]-RADIUS-PROFILE[0]>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>acct answer</td>
<td><ON/OFF></td>
<td>off/on</td>
<td>Включение/отключение передачи сообщений acct для call-orig-answer</td>
</tr>
<tr>
<td>acct CdPN</td>
<td><CDPN_MODE></td>
<td>CdPN-IN/CdPN-OUT</td>
<td>Установить номер вызываемого абонента для пакетов Accounting-Request:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CdPN-IN – использовать номер вызываемого абонента до модификации (полученный в пакете SETUP/INVITE);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CdPN-OUT – использовать номер вызываемого абонента после модификации</td>
</tr>
<tr>
<td>acct CgPN</td>
<td><CGPN_MODE></td>
<td>CgPN-IN/CgPN-OUT</td>
<td>Установить номер вызывающего абонента для пакетов Accounting-Request:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CgPN-IN – использовать номер вызывающего абонента до модификации (полученный в пакете SETUP/INVITE);</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CgPN-OUT – использовать номер вызывающего абонента после модификации</td>
</tr>
<tr>
<td>acct name</td>
<td><USERNAME_MODE></td>
<td>cgpn/ ip_or_stream/ trunk</td>
<td>Установить атрибут User-Name в пакетах Accounting-Request:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cgpn – в качестве значения использовать телефонный номер вызывающей стороны;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ip_or_stream – в качестве значения использовать IP-адрес вызывающей стороны или номер потока, по которому осуществляется входящее соединение;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>trunk – в качестве значения использовать имя транка, по которому осуществляется входящее соединение</td>
</tr>
<tr>
<td>Команда</td>
<td>Формат</td>
<td>Значение</td>
<td>Описание</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>acct restrict</td>
<td><RESTRICT></td>
<td>none/zone/local/emergency/restrict-all</td>
<td>Установить ограничение на исходящую связь при сбое сервера (неполучении ответа от сервера):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>none — разрешать все вызовы; zone — разрешать вызовы на спецслужбы, на местную и зоновую сеть; local — разрешать вызовы на спецслужбы и местную сеть; emergency — разрешать вызовы только на спецслужбы; restrict — запрещать все вызовы</td>
</tr>
<tr>
<td>acct start</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Включить/отключить передачу сообщений acct. start</td>
</tr>
<tr>
<td>acct stop</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Включить/отключить передачу сообщений acct. stop</td>
</tr>
<tr>
<td>acct update</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Включить/отключить передачу сообщений acct. update</td>
</tr>
<tr>
<td>acct update_period</td>
<td><PERIOD></td>
<td>10sec/20sec/30sec/45sec/1min/2min/3min/5min/10min/15min/30min/1hour</td>
<td>Период передачи сообщений acct. update</td>
</tr>
<tr>
<td>acct unsuccessful</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Передавать/не передавать на RADIUS-сервер информацию о неуспешных вызовах</td>
</tr>
<tr>
<td>auth check on seize</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Посылать/не посылать запрос авторизации (Authorization) при входящем занятии</td>
</tr>
<tr>
<td>auth check on stop-dial</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Посылать/не посылать запрос авторизации (Authorization) при конце набора</td>
</tr>
<tr>
<td>auth emergency-on-REJ</td>
<td><PERMIT></td>
<td>not-allow/allow</td>
<td>Разрешить/запретить доступ к спецслужбам при получении отказа в соединении от сервера</td>
</tr>
<tr>
<td>auth framed protocol</td>
<td><FRAMED_PROTOCOL></td>
<td>none/PPP/SLIP/ARAP/Gandalf/Xylogics/X75_Sync</td>
<td>Назначить протокол при использовании пакетного доступа для запросов аутентификации RADIUS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>None — пакетный доступ не используется</td>
</tr>
<tr>
<td>auth name</td>
<td><USERNAME_MODE></td>
<td>cgpn/ip_or_stream/trunk</td>
<td>Установить атрибут User-Name в пакетах Access—Request:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cgpn — в качестве значения использовать телефонный номер вызывающей стороны; ip_or_stream — в качестве значения использовать IP-адрес вызывающей стороны или номер потока, по которому осуществляется входящее соединение; trunk — в качестве значения использовать имя транка, по которому осуществляется входящее соединение</td>
</tr>
</tbody>
</table>
| auth nas port type | <PORT_TYPE> | Async/
| | | Sync/
| | | ISDN_Sync/
| | | ISDN_Async_v120/
| | | ISDN_Async_v110/
| | | Virtual/
| | | PIAFS/
| | | HDLC_Channel/
| | | X25/
| | | X75/
| | | G3_Fax/
| | | SDSL/
| | | ADSL_CAP/
| | | ADSL_DMT/
| | | ISDN/
| | | Ethernet/
| | | xDSL/
| | | Cable/
| | | Wireless/
| | | Wireless_IEEE_802.1 |
| auth pass | <PASSWD> | Пароль не более 15 символов |
| auth restrict | <RESTRICT> | none/zone/
| | | local/emergency/
| | | restrict-all |
| auth service type | <SERVICE_TYPE> | none/
| | | Login/
| | | Framed/
| | | Callback_Login/
| | | Callback_Framed/
| | | Outbound/
| | | Administrative/
| | | NAS_Prompt/
| | | Authenticate_Only/
| | | Callback_NAS_Prompt/
| | | Call_Check/
| | | Callback_Administrative |
| auth session time | <SESSION_TIME_MODE> | ignore/
| | | use_RFC_Session_timeout/
| | | use_CISCO_h323_credit_time |

Назначить тип физического порта NAS (сервера, где аутентифицируется пользователь), по умолчанию Async

Установить значения атрибута User-Password в соответствующем пакете RADIUS-Authorization

Установить ограничение на исходящую связь при сбое сервера (неполучении ответа от сервера):

- none – разрешать все вызовы;
- zone – разрешать вызовы на спецслужбы, на местную и зоновую сеть;
- local – разрешать вызовы на спецслужбы и местную сеть;
- emergency – разрешать вызовы только на спецслужбы;
- restrict-all – запрещать все вызовы

Установить тип услуги, по умолчанию не используется (none)

Установить ограничение максимальной продолжительности вызова на основании значения одного из атрибутов, переданных в Access-Accept от сервера RADIUS:

- ignore – игнорировать возможность ограничения максимальной продолжительности вызова;
- use_rfc_session_timeout – в качестве значения таймера ограничения максимальной продолжительности вызова использовать значение атрибута Session-Timeout;
- use_cisco_h323_credit_time – в качестве значения таймера
4.3.17 Режим конфигурирования статических маршрутов

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду route.

SMG4-[CONFIG]> route
Entering route mode.
SMG4-[CONFIG]-ROUTE>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Выход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>show</td>
<td></td>
<td></td>
<td>Показать конфигурацию профиля RADIUS</td>
</tr>
<tr>
<td>use acct</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Разрешить/запретить отправку Accounting-запросов на RADIUS-сервер</td>
</tr>
<tr>
<td>use auth</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Разрешить/запретить отправку Authorization-запросов на RADIUS-сервер</td>
</tr>
</tbody>
</table>

ограничения максимальной продолжительности вызова использовать значение атрибута Session-Timeout или атрибута Cisco VSA h323-credit-time

Возврат в меню Configuration.

Выход из данного подменю конфигурирования на уровень выше.

Просмотр истории введенных команд.

Завершить данную сессию CLI.
Цифровой шлюз SMG

route add

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>route add</td>
<td><DESTINATION></td>
<td>IP-адрес в формате AAA.BBB.CCC.DDD</td>
<td>Добавить маршрут: DESTINATION – IP-адрес места назначения;</td>
</tr>
<tr>
<td></td>
<td><MASK></td>
<td>маска в формате AAA.BBB.CCC.DDD</td>
<td>MASK – маска сети для заданного IP-адреса;</td>
</tr>
<tr>
<td></td>
<td><GATEWAY></td>
<td>шлюз в формате AAA.BBB.CCC.DDD</td>
<td>GATEWAY – IP-адрес шлюза;</td>
</tr>
<tr>
<td></td>
<td><METRIC></td>
<td>целое число без знака</td>
<td>METRIC – метрика</td>
</tr>
<tr>
<td></td>
<td><IFACE_NAME></td>
<td>строка до 255 символов</td>
<td>IFACE_NAME – сетевой интерфейс</td>
</tr>
<tr>
<td></td>
<td><ENABLE></td>
<td>disable/enable</td>
<td>ENABLE – включить/отключить сетевой маршрут</td>
</tr>
</tbody>
</table>

route del

<table>
<thead>
<tr>
<th>Команда</th>
<th><IDX></th>
<th>0-4095</th>
<th>Удалить маршрут: IDX – индекс сетевого маршрута</th>
</tr>
</thead>
<tbody>
<tr>
<td>show</td>
<td></td>
<td></td>
<td>Показать информацию о конфигурации маршрута</td>
</tr>
</tbody>
</table>

4.3.18 Режим редактирования общих настроек SIP/SIP-T

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду sip configuration.

SMG4-[CONFIG]> sip configuration

Entering SIP/SIP-T/SIP-I/SIP-profile config mode.

SMG4-[CONFIG]-SIP(general)>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>cause codes KZ</td>
<td><ON_OFF></td>
<td>on/off</td>
<td>Установить/отменить спецификацию в соответствии с требованиями Казахстана</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Выход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>ignore_RURI</td>
<td></td>
<td>no/yes</td>
<td>Игнорировать/не игнорировать адрес в R-URI. Игнорируется адресная информация после разделителя «@» в Request-URI, иначе производится проверка на совпадение адресной информации с IP-адресом и именем хоста устройства, и в случае не совпадения вызов отклоняется</td>
</tr>
<tr>
<td>port</td>
<td><PORT></td>
<td>1-65535</td>
<td>Порт для приема сообщений протокола SIP</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>show</td>
<td></td>
<td></td>
<td>Показать общую конфигурацию SIP</td>
</tr>
<tr>
<td>T1</td>
<td><T1_TIMER></td>
<td>0-255</td>
<td>Установить SIP таймер T1</td>
</tr>
<tr>
<td>T2</td>
<td><T2_TIMER></td>
<td>0-255</td>
<td>Установить SIP таймер T2</td>
</tr>
<tr>
<td>T4</td>
<td><T4_TIMER></td>
<td>0-255</td>
<td>Установить SIP таймер T4</td>
</tr>
<tr>
<td>transport</td>
<td><TRANSPORT></td>
<td>UDP-only/UDP-prefer/TCP-prefer/TCP-only</td>
<td>Установить протокол транспортного уровня, используемый для приема и передачи сообщений SIP:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TCP-prefer – прием по UDP и TCP. Отправка по TCP. В случае если не удалось установить соединение по TCP, отправка производится по UDP; UDP-prefer – прием по UDP и TCP. Отправка пакетов более 1300 байт по TCP, менее 1300 байт – по UDP; UDP-only – использовать только UDP протокол; TCP-only – использовать только TCP протокол</td>
</tr>
</tbody>
</table>
4.3.19 Режим конфигурирования параметров интерфейса SIP/SIP-T

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду sip interface <SIPT_INDEX>, где <SIPT_INDEX> – номер интерфейса SIP/SIP-T.

```
SMG4-[CONFIG]> sip interface 0
Entering SIPT-mode.
SMG4-[CONFIG]-SIP/SIPT-INTERFACE[0]>
```

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>access category</td>
<td><CAT_IDX></td>
<td>0-31</td>
<td>Назначить категорию доступа для группы линий</td>
</tr>
<tr>
<td>alarm indication</td>
<td><on/off></td>
<td></td>
<td>Включение индикации аварии о недоступности интерфейса.</td>
</tr>
<tr>
<td>cci</td>
<td><on/off></td>
<td>on/off</td>
<td>Включить поддержку проверки целостности канала.</td>
</tr>
<tr>
<td>cgpn replace</td>
<td><YES_NO></td>
<td>no/yes</td>
<td>Брать CgPN из параметра "Имя пользователя/Номер", при отключенной функции – используется номер CgPN, принятый во входящем вызове</td>
</tr>
<tr>
<td>clearchan override</td>
<td><on/off></td>
<td>on/off</td>
<td>Установить опцию clear channel override - анонсировать на второе плечо только кодек CLEARMODE при работе первого плеча в clear channel</td>
</tr>
<tr>
<td>clearchan transit</td>
<td><on/off></td>
<td>on/off</td>
<td>Установить опцию clear channel transit - передавать RTP точно в том же виде, каким он пришёл на первое плечо (включая время пакетизации).</td>
</tr>
<tr>
<td>codec</td>
<td><CODEC></td>
<td>G.711-A</td>
<td>Установить кодек, используемый для передачи голосовых данных</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>DSCP RTP</td>
<td><DSCP_RTP></td>
<td>0-255</td>
<td>Задать идентификатор DSCP для RTP-трафика</td>
</tr>
<tr>
<td>DSCP SIG</td>
<td><DSCP_SIG></td>
<td>0-255</td>
<td>Задать идентификатор DSCP для SIG-трафика</td>
</tr>
<tr>
<td>DTMF mime type</td>
<td><MIME_TYPE></td>
<td>application/dtmf или application/dtmf-relay</td>
<td>Установить тип нагрузки, используемый для передачи DTMF в пакетах INFO протокола SIP application/dtmf-relay – в пакетах INFO application/dtmf-relay протокола SIP (* и # передаются как символы * и #); application/dtmf – в пакетах INFO application/dtmf протокола SIP (* и # передаются как числа 10 и 11)</td>
</tr>
<tr>
<td>DTMF mode</td>
<td><DTMF_m></td>
<td>inband/RFC2833/SIP-INFO</td>
<td>Режим DTMF для данного интерфейса</td>
</tr>
<tr>
<td>DTMF payload</td>
<td><DTMF_p></td>
<td>96-127</td>
<td>Установить тип полезной нагрузки для RFC2833</td>
</tr>
<tr>
<td>DTMF payload-equal</td>
<td><DTMF_PT_EQ></td>
<td>(off/on)</td>
<td>Включить/отключить опции «Одинаковый RFC2833 PT»</td>
</tr>
<tr>
<td>ecanc</td>
<td><CANCELLATION></td>
<td>voice/nlp-off-voice/modem/off</td>
<td>Установить режим эхокомпенсации: voice/nlp-off-voice/modem/off</td>
</tr>
</tbody>
</table>

Voice – эхокомпенсаторы включены (данный режим установлен по умолчанию);
Nlp-off-voice – эхокомпенсаторы включены в голосовом режиме, нелинейный процессор NLP выключен. В случае, когда уровни сигналов на передаче и приеме сильно различаются, сла́бый сигнал может быть подавлен нелинейным процессором NLP. Для того чтобы этого не происходило, используйте данный режим работы.
<table>
<thead>
<tr>
<th>Действие</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Выход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td>Просмотр истории введенных команд</td>
</tr>
</tbody>
</table>
| **fax detection** | Установить режим детектирования факсов:
- **no** – не детектировать факсы;
- **callee** – только на принимающей стороне;
- **caller** – только на передающей стороне;
- **callee_and_caller** – на принимающей и передающей стороне |
| **fax mode** | Выбор режима передачи факсов |
| **gain rx** | Установить громкость на прием голоса, усиление/ослабление уровня сигнала, принятого от взаимодействующего шлюза, и выдаваемого в динамик телефонного аппарата подключенного к шлюзу SMG |
| **gain tx** | Громкость на передачу голоса, усиление/ослабление уровня сигнала принятого с микрофона телефонного аппарата подключенного к шлюзу SMG и передаваемого на взаимодействующий шлюз |
| **hostname clear** | Удалить имя хоста взаимодействующего шлюза |
| **hostname set** | Установить имя хоста взаимодействующего шлюза |
| **inband_signal_with_183_and_sdp** | Выдавать в SIP ответ 183/SDP для проключения голосового тракта при получении из PRI сообщений \texttt{CALL PROCEEDING} или \texttt{PROGRESS} содержащих \texttt{progress indicator=8} (\texttt{In-band signal}) |
| **jitter adaptation period** | Установить период адаптации джиттер-буфера к нижней границе, в миллисекундах |
| **jitter adjust mode** | Установить режим подстройки джиттер-буфера:
- **non-immediate** – плавный;
- **immediately** – моментальный. |
| **jitter deletion mode** | Установить режим адаптивного джиттер-буфера. Определяет, каким образом будут удаляться пакеты при адаптации буфера к нижней границе:
- **soft** – используется интеллектуальная схема выбора пакетов для удаления, превысивших порог;
- **hard** – пакеты, задержка которых превысила порог, немедленно удаляются. |
| **jitter deletion threshold** | Установить порог немедленного удаления пакетов в миллисекундах. При росте буфера и превышении задержки пакета свыше данной границы пакеты немедленно удаляются |
| **jitter init** | Установить начальное значение адаптивного джиттер-буфера в миллисекундах |
Цифровой шлюз SMG

| **jitter max** | `<JT_MAX>` | 0-200 | Установить верхнюю границу (максимальный размер) адаптивного джиттер буфера в миллисекундах |
| **jitter min** | `<JT_MIN>` | 0-200 | Установить размер фиксированного, либо нижнюю границу (минимальный размер) адаптивного джиттер-буфера |
| **jitter mode** | `<JT_MODE>` | adaptive/non-adaptive | Режим работы джиттер-буфера:
Adaptive – адаптивный;
non-adaptive – фиксированный |
<p>| jitter vbd | <code><JT_VBD></code> | 0-200 | Установить фиксированный размер буфера для передачи данных в режиме VBD |
| max active | <code><MAX_ACTIVE></code> | 0-65535 | Установить максимальное число активных подключений для интерфейса |
| mode | <code><mode></code> | SIP/ SIP-T/ SIP-I/ E1-TRANSIT | Задать режим работы интерфейса (SIP-профиль назначается абонентам SIP) |
| name | <code><s_name></code> | разрешено использовать буквы, цифры, символ '_'. максимум 31 символ | Задать имя для SIP-T интерфейса |
| net-interface rtp | <code><IFACE_NAME></code> | строка до 255 символов | Задать сетевой интерфейс для RTP |
| net-interface sig | <code><IFACE_NAME></code> | строка до 255 символов | Задать сетевой интерфейс для SIP |
| numbering plan | <code><NUMPLAN></code> | 0-15 | Выбрать план нумерации |
| password | <code><PASSWD></code> | строка до 15 символов | Установить пароль, используемый для аутентификации |
| options | <code><OPTIONS></code> | enable/disable | Включить функцию контроля доступности направления посредством сообщений OPTIONS, при недоступности направления вызов будет осуществлен через резервную транковую группу. Функция также анализирует полученный ответ на сообщение OPTIONS, что позволяет не использовать настроенные в данном направлении возможности 100rel, replaces и timer, если встречная сторона их не поддерживает. |
| options period | <code><OPTIONS_PERIOD></code> | 30-3600 | Установить время в секундах, по истечении которого при недоступности направления вызов будет осуществлен через резервную транковую группу. |
| port | <code><PORT></code> | 1-65535 | Задать UDP-порт взаимодействующего шлюза, на котором он принимает сигнализацию SIP |
| public_ip clear | | | Удалить Public IP |
| public_ip set | <code><PUBLIC_IP></code> | IP-адрес в формате AAA.BBB.CCC.DDD | Установить Public IP для подстановки в сообщения SIP/SDP |
| quit | | | Завершить данную сессию CLI |
| redirection 302 | <code><REDIRECTION></code> | on/off | Установить/отменить использование переадресации (302) |
| redirection server | <code><REDIRECT_SERV></code> | on/off | Перенаправлять/ не перенаправлять вызов, отправленный по публичному адресу, на частный адрес абонента, не используя маршрутизацию по плану нумерации. Маршрутизация осуществляется непосредственно на адрес из заголовка contact ответа 302 принятого от сервера переадресации. Предварительно необходимо установить переадресацию 302 (команда redirection 302) |
| refer | <code><REFER></code> | enable/disable | Установить/отменить возможность передачи вызова с использованием REFER |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>register delay</td>
<td>500–5000</td>
<td>Минимальный интервал между отправками сообщений Register, необходимый для защиты от интенсивного трафика, вызванного одновременной регистрацией большого количества абонентов</td>
</tr>
<tr>
<td>register expires</td>
<td>90–64800</td>
<td>Установить период времени для осуществления перерегистрации</td>
</tr>
<tr>
<td>regmode</td>
<td>none/trunk-mode/</td>
<td>Установить тип регистрации на вышестоящем сервере.</td>
</tr>
<tr>
<td>reliable_1xx_response</td>
<td>on/off</td>
<td>При включении данной опции запрос INVITE и предварительные ответы класса 1xx, будут содержать тег require: 100rel, требующий гарантированного подтверждения предварительных ответов.</td>
</tr>
<tr>
<td>remote name in contact header</td>
<td>on/off</td>
<td>Вставить в заголовок Contact отображаемое имя</td>
</tr>
<tr>
<td>route_mode</td>
<td>RURI/TODefaultCdPN</td>
<td>Выбор режима маршрутизации: по RURI/полю TO/CdPN по-умолчанию</td>
</tr>
<tr>
<td>routing_profile</td>
<td>0–127</td>
<td>Выбор профиля маршрутизации по расписанию</td>
</tr>
<tr>
<td>RTCP control</td>
<td>2–255</td>
<td>Установить количество интервалов времени (RTCP period), в течение которого ожидаются пакеты протокола RTCP со встречной стороны.</td>
</tr>
<tr>
<td>RTCP period</td>
<td>5–255</td>
<td>Установить период времени в секундах, через который устройство отправляет контрольные пакеты по протоколу RTCP</td>
</tr>
<tr>
<td>RTP loss silence</td>
<td>1–30</td>
<td>Установить таймаут ожидания RTP-пакетов при использовании опции подавления пауз. Коэффициент определяет, во сколько раз значение больше, чем RTP-loss timeout</td>
</tr>
<tr>
<td>RTP loss timeout</td>
<td>10–300/off</td>
<td>Установить таймаут ожидания RTP-пакетов</td>
</tr>
<tr>
<td>sdp_in_18x</td>
<td>on/off</td>
<td>Всегда передавать SDP в предварительных ответах</td>
</tr>
<tr>
<td>show</td>
<td></td>
<td>Показать информацию интерфейса SIP-T</td>
</tr>
<tr>
<td>sipcause profile</td>
<td>[0–63]/none</td>
<td>Выбор профиля соответствия причин Q.850 и sip-reply</td>
</tr>
<tr>
<td>sipdomain</td>
<td></td>
<td>Установить адрес домена регистрации</td>
</tr>
<tr>
<td>source port check</td>
<td>on/off</td>
<td>Контролировать поступление сигнального трафика с UDP-порта указанного в настройке port</td>
</tr>
<tr>
<td>src verify</td>
<td>on/off</td>
<td>Контролировать поступление медиатрафика с IP-адреса и UDP-порта указанных в описании сеанса связи SDP(on)/ принимать трафик с любого IP-адреса и UDP-порта (off)</td>
</tr>
<tr>
<td>STUN ip</td>
<td></td>
<td>Установить адрес STUN-сервера, на который будут направляться запросы</td>
</tr>
<tr>
<td>STUN port</td>
<td>1–65535</td>
<td>Установить порт STUN-сервера, на который будут направляться запросы</td>
</tr>
<tr>
<td>STUN use</td>
<td>no/yes</td>
<td>Использовать STUN-сервер для определения Public IP</td>
</tr>
<tr>
<td>t38 bitrate</td>
<td></td>
<td>Установить максимальную скорость передачи факса по протоколу T38</td>
</tr>
<tr>
<td>Команда</td>
<td>Параметр</td>
<td>Значение</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>t38 disable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t38 enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t38 fillbitremoval</td>
<td><T38_FBR></td>
<td>on/off</td>
</tr>
<tr>
<td>t38 pte</td>
<td><T38_PTE></td>
<td>10/20/30/40</td>
</tr>
<tr>
<td>t38 ratemgmt</td>
<td><T38_RATE_MGMT></td>
<td>localTCF/transferedTCF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t38 redundancy</td>
<td><T38_REDUNDANCY></td>
<td>off/1/2/3</td>
</tr>
<tr>
<td>timer enable</td>
<td><YES_NO></td>
<td>no/yes</td>
</tr>
<tr>
<td>timer refresher</td>
<td><REFRESHER></td>
<td>uac/uas</td>
</tr>
<tr>
<td>timer session</td>
<td><MIN_SE></td>
<td>90-32000</td>
</tr>
<tr>
<td>timer session</td>
<td><EXPIRES></td>
<td>90-64800</td>
</tr>
<tr>
<td>trunk</td>
<td><TRUNK></td>
<td>0-31</td>
</tr>
<tr>
<td>trusted network</td>
<td><YES_NO></td>
<td>yes/no</td>
</tr>
<tr>
<td>username</td>
<td><USERNAME></td>
<td>строка не более 15 символов</td>
</tr>
<tr>
<td>VAD_CNG</td>
<td><ON_OFF></td>
<td>on/off</td>
</tr>
<tr>
<td>vbd codec</td>
<td><CODEC></td>
<td>G.711-U, G.711-A</td>
</tr>
<tr>
<td>vbd enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vbd disable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vbd payload type</td>
<td><VBD_p></td>
<td>Static, 96-127</td>
</tr>
</tbody>
</table>

4.3.20 Режим конфигурирования преобразования категорий ОКС-7

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду ss7cat.

SMG4-[CONFIG]> ss7cat
Entering SS7-categories mode.
SMG4-[CONFIG]-SS7-CAT>
4.3.21 Режим конфигурирования таймеров ОКС-7

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду `ss7timers <SS7_TIMERS_INDEX>`, где `<SS7_TIMERS_INDEX>` — номер профиля.

```
SMG4-[CONFIG]> ss7timers 0
Entering SS7Timers-mode.
SMG4-[CONFIG]-SS7-TIMERS[0]>
```

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>?</code></td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td><code>config</code></td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
<td></td>
<td>Переход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td><code>history</code></td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td><code>quit</code></td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td><code>set mtp2 T1</code></td>
<td><code><TIMER></code></td>
<td>400-500</td>
<td>Задать значение таймера уровня MTP2 T1 (x100мс)</td>
</tr>
<tr>
<td><code>set mtp2 T2</code></td>
<td><code><TIMER></code></td>
<td>50-500</td>
<td>Задать значение таймера уровня MTP2 T2 (x100мс)</td>
</tr>
<tr>
<td><code>set mtp2 T3</code></td>
<td><code><TIMER></code></td>
<td>10-20</td>
<td>Задать значение таймера уровня MTP2 T3 (x100мс)</td>
</tr>
<tr>
<td><code>set mtp2 T4 normal</code></td>
<td><code><TIMER></code></td>
<td>75-95</td>
<td>Задать значение таймера уровня MTP2 T4 normal (x100мс)</td>
</tr>
<tr>
<td><code>set mtp2 T4 emergency</code></td>
<td><code><TIMER></code></td>
<td>4-6</td>
<td>Задать значение таймера уровня MTP2 T4 emergency (x100мс)</td>
</tr>
<tr>
<td><code>set mtp2 T6</code></td>
<td><code><TIMER></code></td>
<td>30-60</td>
<td>Задать значение таймера уровня MTP2 T6 (x100мс)</td>
</tr>
<tr>
<td><code>set mtp2 T7 normal</code></td>
<td><code><TIMER></code></td>
<td>5-20</td>
<td>Задать значение таймера уровня MTP2 T7 normal (x100мс)</td>
</tr>
<tr>
<td><code>set mtp3 T2</code></td>
<td><code><TIMER></code></td>
<td>7-20</td>
<td>Задать значение таймера уровня MTP3 T2 (x100мс)</td>
</tr>
<tr>
<td><code>set mtp3 T4</code></td>
<td><code><TIMER></code></td>
<td>5-12</td>
<td>Задать значение таймера уровня MTP3 T4 (x100мс)</td>
</tr>
<tr>
<td><code>set mtp3 T12</code></td>
<td><code><TIMER></code></td>
<td>8-15</td>
<td>Задать значение таймера уровня MTP3 T12 (x100мс)</td>
</tr>
<tr>
<td><code>set mtp3 T13</code></td>
<td><code><TIMER></code></td>
<td>8-15</td>
<td>Задать значение таймера уровня MTP3 T13 (x100мс)</td>
</tr>
<tr>
<td><code>set mtp3 T14</code></td>
<td><code><TIMER></code></td>
<td>20-30</td>
<td>Задать значение таймера уровня MTP3 T14 (x100мс)</td>
</tr>
<tr>
<td><code>set mtp3 T17</code></td>
<td><code><TIMER></code></td>
<td>8-15</td>
<td>Задать значение таймера уровня MTP3 T17 (x100мс)</td>
</tr>
<tr>
<td><code>set mtp3 T22</code></td>
<td><code><TIMER></code></td>
<td>1800-3600</td>
<td>Задать значение таймера уровня MTP3 T22 (x100мс)</td>
</tr>
<tr>
<td><code>set mtp3 T23</code></td>
<td><code><TIMER></code></td>
<td>1800-3600</td>
<td>Задать значение таймера уровня MTP3 T23 (x100мс)</td>
</tr>
<tr>
<td><code>set isup T1</code></td>
<td><code><TIMER></code></td>
<td>150-600</td>
<td>Задать значение таймера уровня ISUP T1 (x100мс)</td>
</tr>
<tr>
<td><code>set isup T5</code></td>
<td><code><TIMER></code></td>
<td>3000-9000</td>
<td>Задать значение таймера уровня ISUP T5 (x100мс)</td>
</tr>
<tr>
<td><code>set isup T6</code></td>
<td><code><TIMER></code></td>
<td>100-600</td>
<td>Задать значение таймера уровня ISUP T6 (x100мс)</td>
</tr>
</tbody>
</table>

Цифровой шлюз SMG
4.3.22 Режим конфигурирования параметров синхронизации sync

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду sync.

SMG4-[CONFIG] > sync
Entering sync mode.
SMG4-[CONFIG]-SYNC>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Переход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>new stream</td>
<td><E1></td>
<td>0-3</td>
<td>Задать источник синхронизации с потока E1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E1 – номер потока E1</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
</tbody>
</table>

set isup T7 <TIMER> 200-300 Задать значение таймера уровня ISUP T7 (x100мс)
set isup T8 <TIMER> 150-600 Задать значение таймера уровня ISUP T1 (x100мс)
set isup T9 <TIMER> 300-2400 Задать значение таймера уровня ISUP T9 (x100мс)
set isup T12 <TIMER> 150-600 Задать значение таймера уровня ISUP T12 (x100мс)
set isup T13 <TIMER> 3000-9000 Задать значение таймера уровня ISUP T13 (x100мс)
set isup T14 <TIMER> 150-600 Задать значение таймера уровня ISUP T14 (x100мс)
set isup T15 <TIMER> 3000-9000 Задать значение таймера уровня ISUP T15 (x100мс)
set isup T16 <TIMER> 150-600 Задать значение таймера уровня ISUP T16 (x100мс)
set isup T17 <TIMER> 3000-9000 Задать значение таймера уровня ISUP T17 (x100мс)
set isup T18 <TIMER> 150-600 Задать значение таймера уровня ISUP T18 (x100мс)
set isup T19 <TIMER> 3000-9000 Задать значение таймера уровня ISUP T19 (x100мс)
set isup T20 <TIMER> 150-600 Задать значение таймера уровня ISUP T20 (x100мс)
set isup T21 <TIMER> 3000-9000 Задать значение таймера уровня ISUP T21 (x100мс)
set isup T22 <TIMER> 150-600 Задать значение таймера уровня ISUP T22 (x100мс)
set isup T23 <TIMER> 3000-9000 Задать значение таймера уровня ISUP T23 (x100мс)
set isup T24 <TIMER> 1-20 Задать значение таймера уровня ISUP T24 (x100мс)
set isup T25 <TIMER> 10-100 Задать значение таймера уровня ISUP T25 (x100мс)
set isup T26 <TIMER> 600-1800 Задать значение таймера уровня ISUP T26 (x100мс)
set isup T33 <TIMER> 120-150 Задать значение таймера уровня ISUP T33 (x100мс)
set isup T34 <TIMER> 20-40 Задать значение таймера уровня ISUP T34 (x100мс)
set isup T35 <TIMER> 150-200 Задать значение таймера уровня ISUP T35 (x100мс)

show Показать конфигурацию
Цифровой шлюз SMG

4.3.23 Режим конфигурирования параметров syslog

Для перехода в данный режим необходимо в режиме конфигурирования выполнить команду syslog.

SMG4-[CONFIG]> syslog

Entering syslog mode.

SMG4-[CONFIG]-SYSLOG>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>alarm</td>
<td><ALARM></td>
<td>0-99</td>
<td>Передавать данные об авариях с заданным уровнем приоритетности, 0 — данные передаваться не будут</td>
</tr>
<tr>
<td>apply</td>
<td>yes/no</td>
<td></td>
<td>Применить настройки системных журналов</td>
</tr>
<tr>
<td>authlog set</td>
<td><IPADDR></td>
<td>IP-адрес в формате AAA.BBB.CCC.DDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td><PORT></td>
<td>1-65535</td>
<td>Включить вывод истории доступа к устройству</td>
</tr>
<tr>
<td></td>
<td><MODE></td>
<td>off/on</td>
<td>IPADDR — IP-адрес syslog-сервера</td>
</tr>
<tr>
<td></td>
<td><TYPE></td>
<td>local/remote</td>
<td>PORT — порт Syslog-сервера</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MODE — включить, либо выключить ведение журнала</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TYPE — определяет сохранять журнал локально, либо передавать на Syslog сервер</td>
</tr>
<tr>
<td>authlog show</td>
<td></td>
<td></td>
<td>Показать настройки вывода истории доступа к устройству</td>
</tr>
<tr>
<td>calls</td>
<td><CALLS></td>
<td>0-99</td>
<td>Включить траассирование вызовов с заданным уровнем отладки, 0 — данные передаваться не будут</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Переход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>hw</td>
<td><E1></td>
<td>0-15</td>
<td>Передавать аппаратные данные потока Е1 с заданным уровнем отладки, 0 — данные передаваться не будут</td>
</tr>
<tr>
<td></td>
<td><HW></td>
<td>0-99</td>
<td>Е1 — номер потока Е1; HW — уровень приоритетности</td>
</tr>
<tr>
<td>ipaddr</td>
<td><IPADDR></td>
<td>IP-адрес в формате AAA.BBB.CCC.DDD</td>
<td>Установить IP-адрес syslog-сервера</td>
</tr>
<tr>
<td>isup</td>
<td><ISUP></td>
<td>0-99</td>
<td>Включить траассирование подсистемы ISUP с заданным уровнем отладки, 0 — данные передаваться не будут</td>
</tr>
<tr>
<td>msp</td>
<td><MSP></td>
<td>0-99</td>
<td>Включить траассирование ресурсов сигнального процессора MSP с заданным уровнем отладки, 0 — данные передаваться не будут</td>
</tr>
</tbody>
</table>
4.3.24 Режим конфигурирования транковых групп и транковых направлений

Для перехода в режим конфигурирования транковых групп необходимо в режиме конфигурирования выполнить команду `trunk group <TRUNK_INDEX>`, где `<TRUNK_INDEX>` — номер транковой группы.

```
SMG1016M-[CONFIG]> trunk group 0
Entering trunk-mode.
SMG1016M-[CONFIG]-TRUNK[0]>
```

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>port</td>
<td><PORT></td>
<td>1-65535</td>
<td>Установить номер локального UDP порта для работы по протоколу SIP-T</td>
</tr>
<tr>
<td>Q931</td>
<td><Q931></td>
<td>0-99</td>
<td>Включить трассирование сигнализации Q.931 с заданным уровнем отладки, 0 — данные передаваться не будут</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить текущую сессию CLI</td>
</tr>
<tr>
<td>radius</td>
<td><RADIUS></td>
<td>0-99</td>
<td>Включить трассирование протокола RADIUS с заданным уровнем отладки, 0 — данные передаваться не будут</td>
</tr>
<tr>
<td>rtp-create</td>
<td><RTP></td>
<td>0-99</td>
<td>Включить трассирование создания проключений RTP с заданным уровнем отладки, 0 — данные передаваться не будут</td>
</tr>
<tr>
<td>show</td>
<td></td>
<td></td>
<td>Показать информацию о конфигурации Syslog</td>
</tr>
<tr>
<td>sipt</td>
<td><SIPT></td>
<td>0-99</td>
<td>Включить трассирование сигнализации SIP-T с заданным уровнем отладки, 0 — данные передаваться не будут</td>
</tr>
<tr>
<td>start</td>
<td></td>
<td></td>
<td>Включить отправку данных на syslog-сервер</td>
</tr>
<tr>
<td>stop</td>
<td></td>
<td></td>
<td>Выключить отправку данных на syslog-сервер</td>
</tr>
<tr>
<td>userlog</td>
<td><IPADDR></td>
<td></td>
<td>Включить вывод истории введенных команд</td>
</tr>
<tr>
<td></td>
<td><PORT></td>
<td>1-65535</td>
<td></td>
</tr>
<tr>
<td></td>
<td><MODE></td>
<td>off/standart/full</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **IPADDR** — IP-адрес syslog-сервера
- **PORT** — порт syslog-сервера
- **MODE** — уровень детализации журнала введенных команд
 - `off` — не формировать журнал введенных команд
 - `standart` — в сообщениях передается название измененного параметра
 - `full` — в сообщениях передается название измененного параметра и значения параметра до и после изменения
<table>
<thead>
<tr>
<th>destination</th>
<th><TG_ENTRY></th>
<th>Q.931/SS7/SIPT/ E1-channels целое число без знака</th>
<th>Назначить транковую группу интерфейсу Q931, ОКС-7, SIP-T, либо каналам E1</th>
<th>ТG_ENTRY — тип интерфейса ENTRY_INDEX — индекс объекта (номер потока с сигнализацией Q931, группы линий, интерфейса SIP-T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct prefix</td>
<td><IDX></td>
<td>0-255/none</td>
<td>Установить прямое проключение вызовов из данной транковой группы на указанный пребфикс, без анализа номеров вызывающего и вызываемого абонентов</td>
<td></td>
</tr>
<tr>
<td>disable all</td>
<td><YES_NO></td>
<td>yes/no</td>
<td>Запретить /разрешить исходящие и входящие вызовы для данной транковой группы</td>
<td></td>
</tr>
<tr>
<td>disable in</td>
<td></td>
<td></td>
<td>Запретить входящие вызовы для данной транковой группы</td>
<td></td>
</tr>
<tr>
<td>disable out</td>
<td></td>
<td></td>
<td>Запретить исходящие вызовы для данной транковой группы</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
<td>Выход из данного подменю конфигурирования на уровень выше</td>
<td></td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
<td></td>
</tr>
<tr>
<td>modifiers table incoming called</td>
<td><MODTBL_INDEX></td>
<td>0-255/none</td>
<td>Задать модификатор транковой группы для модификаций, основанных на анализе номера вызываемого абонента, принятою из входящего канала</td>
<td></td>
</tr>
<tr>
<td>modifiers table incoming calling</td>
<td><MODTBL_INDEX></td>
<td>0-255/none</td>
<td>Задать модификатор транковой группы для модификаций, основанных на анализе номера вызывающего абонента, передаваемого в исходящий канал</td>
<td></td>
</tr>
<tr>
<td>modifiers table outgoing called</td>
<td><MODTBL_INDEX></td>
<td>0-255/none</td>
<td>Задать модификатор транковой группы для модификаций, основанных на анализе номера вызываемого абонента, передаваемого в исходящий канал</td>
<td></td>
</tr>
<tr>
<td>modifiers table outgoing original</td>
<td><MODTBL_INDEX></td>
<td>0-255/none</td>
<td>Задать модификатор транковой группы для модификаций, основанных на анализе исходного номера вызываемого абонента, передаваемого в исходящий канал</td>
<td></td>
</tr>
<tr>
<td>modifiers table incoming redirecting</td>
<td><MODTBL_INDEX></td>
<td>0-255/none</td>
<td>Задать модификатор транковой группы для модификаций, основанных на анализе номера переадресующего абонента, передаваемого в исходящий канал</td>
<td></td>
</tr>
<tr>
<td>modifiers table outgoing calling</td>
<td><MODTBL_INDEX></td>
<td>0-255/none</td>
<td>Задать имя транковой группы</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td><s_name></td>
<td>разрешено использовать буквы, цифры, символ ’_’. Максимум 31 символ</td>
<td>Завершить данную сессию CLI</td>
<td></td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
<td></td>
</tr>
<tr>
<td>radius profile</td>
<td><IDX></td>
<td>0-31/no</td>
<td>Задать профиль RADIUS</td>
<td></td>
</tr>
<tr>
<td>reserv</td>
<td><TG_RSV_IDX></td>
<td>0-31</td>
<td>Установить номер резервной транковой группы</td>
<td></td>
</tr>
<tr>
<td>show</td>
<td></td>
<td></td>
<td>Показать конфигурацию транковой группы</td>
<td></td>
</tr>
</tbody>
</table>
Для перехода в режим конфигурирования транковых направлений необходимо в режиме конфигурирования выполнить команду `trunk direction <DIRECTION_INDEX>`, где `<DIRECTION_INDEX>` – номер транковой группы.

SMG4-[CONFIG]> trunk direction 0
Entering trunk-mode.
SMG4-[CONFIG]-TRUNK_DIRECTION[0]>

<table>
<thead>
<tr>
<th>Команда</th>
<th>Параметр</th>
<th>Значение</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
<td>Показать перечень доступных команд</td>
</tr>
<tr>
<td>config</td>
<td></td>
<td></td>
<td>Возврат в меню Configuration.</td>
</tr>
<tr>
<td>Exit</td>
<td></td>
<td></td>
<td>Переход из данного подменю конфигурирования на уровень выше</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td></td>
<td>Просмотр истории введенных команд</td>
</tr>
<tr>
<td>list add</td>
<td><TD_TRUNK></td>
<td>0-63</td>
<td>Добавить транковую группу с заданным индексом в направление</td>
</tr>
<tr>
<td>list remove</td>
<td><TD_TRUNK></td>
<td>0-63</td>
<td>Удалить транковую группу с заданным индексом из направления</td>
</tr>
<tr>
<td>mode</td>
<td></td>
<td>successive_forward/first_forward/last_backward</td>
<td>Задать метод выбора транк. групп в направлении</td>
</tr>
<tr>
<td></td>
<td></td>
<td>successive_backward/first_forward/last_backward</td>
<td>Последовательно вперед</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Последовательно назад</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Начиная с первого вперед</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Начиная с последнего назад</td>
</tr>
<tr>
<td>name</td>
<td><s_name></td>
<td></td>
<td>Задать имя транкового направления</td>
</tr>
<tr>
<td>quit</td>
<td></td>
<td></td>
<td>Завершить данную сессию CLI</td>
</tr>
<tr>
<td>show</td>
<td></td>
<td></td>
<td>Показать настройки транкового направления</td>
</tr>
</tbody>
</table>
ПРИЛОЖЕНИЕ А. НАЗНАЧЕНИЕ КОНТАКТОВ РАЗЪЕМОВ КАБЕЛЯ

Назначение контактов разъемов RJ-48 для подключения потоков E1 соответствует спецификации ISO/IEC 10173 и приведено в таблице ниже.

<table>
<thead>
<tr>
<th>№ контакта (Pin)</th>
<th>Назначение</th>
<th>Нумерация контактов</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RCV from network (tip)</td>
<td>Pin 1</td>
</tr>
<tr>
<td>2</td>
<td>RCV from network (ring)</td>
<td>Pin 8</td>
</tr>
<tr>
<td>3</td>
<td>RCV shield</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>XMT tip</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>XMT ring</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>XMT shield</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Не используется</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Не используется</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>№ контакта (Pin)</th>
<th>Назначение</th>
<th>Нумерация контактов</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Не используется</td>
<td>Pin 1</td>
</tr>
<tr>
<td>2</td>
<td>Не используется</td>
<td>Pin 8</td>
</tr>
<tr>
<td>3</td>
<td>TX</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Не используется</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RX</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Не используется</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Не используется</td>
<td></td>
</tr>
</tbody>
</table>

Назначение контактов разъема RJ-45 консольного порта Console приведено в таблице ниже.
ПРИЛОЖЕНИЕ Б. РЕЗЕРВНОЕ ОБНОВЛЕНИЕ ВСТРОЕННОГО ПО УСТРОЙСТВА

В случае, когда не удается обновить ПО через web-интерфейс или консоль (Telnet, RS-232), существует возможность резервного обновления ПО через RS-232.

Для того чтобы обновить встроенное ПО устройства, необходимы следующие программы:
– программа терминалов (например, TERATERM);
– программа TFTP сервера.

Последовательность действий при обновлении устройства:

1. Подключиться к порту Ethernet устройства;
2. Подключить скрещенным кабелем Com-порт компьютера к Console-порту устройства;
3. Запустить терминальную программу;
4. Настроить скорость передачи 115200, формат данных 8 бит, без паритета, 1 бит стоповый, без управления потоком;
5. Запустить на компьютере программу tftp сервера и указать путь к папке smg_files, в ней создать папку smg4, в которую поместить файлы smg4_kernel, smg4_initrd (компьютер, на котором запущен TFTP server, и устройство должны находиться в одной сети);
6. Включить устройство и в окне терминальной программы остановить загрузку путем введения команды “stop”:

BootROM 1.08
Booting from SPI flash
General initialization - Version: 1.0.0

High speed PHY - Version: 2.1.4 (COM-PHY-V20)
Update PEX Device ID 0x67100
High speed PHY - Ended Successfully
DDR3 Training Sequence - Ver 5.5.0
DDR3 Training Sequence - Run without PBS.
DDR3 Training Sequence - Ended Successfully
BootROM: Image checksum verification PASSED

** LOADER **

Board: RD-88F6W11
SoC: MV6710 A1
CPU: Marvell PJ4B v7 UP (Rev 1) LE
CPU @ 800 [MHz]
L2 @ 533 [MHz]
TClock @ 200 [MHz]
DDR @ 533 [MHz]
Цифровой шлюз SMG

DDR 16Bit Width, FastPath Memory Access
DRAM: 512 MiB

Initialize PHY on port1

Map:
 Code: 0x1fefd000:0x1ff8f9c0
 BSS: 0x1ffeaf8
 Stack: 0x1f9eaeaf8
 Heap: 0x1f9eb000:0x1fefd000

NAND: Using Hamming 1-bit ECC for NAND device
1024 MiB
MMC: MRVL_MMC: 0
SF: Detected MX25L12805D with page size 64 KiB, total 16 MiB
*** Warning - bad CRC, using default environment

PCI:
Initialize and scan all PCI interfaces
PEX unit.port(active IF[-first bus]):
--
PEX 0.0(0): Detected No Link.
PEX 0.1(1): Detected No Link.
ready
FPU not initialized
USB 0: Host Mode
USB 1: Host Mode

SF: Detected MX25L12805D with page size 64 KiB, total 16 MiB
Factory settings:
 MODEL: <SMG-4>
 S/N: <VI3F000026>
 HW: <1v1>
 LAN MAC: <02:00:04:88:29:93>

Net: egiga0, egigal [PRIME]
Type 'stop' to stop autoboot: 0
SMG4>>

7. Ввести set ipaddr <IP-адрес устройства> <ENTER>;
 Пример: set ipaddr 192.168.2.2

8. Ввести set netmask <сетевая маска устройства> <ENTER>;
 Пример: set netmask 255.255.255.0

9. Ввести set serverip <IP-адрес компьютера, на котором запущен tftp сервер> <ENTER>;
 Пример: set serverip 192.168.2.5

10. Ввести mii si <ENTER> для активации сетевого интерфейса:

=> mii si
Init switch 0: ..Ok!
Init switch 1: ..Ok!
Init phy 1: ..Ok!
Init phy 2: ..Ok!
=>
11. **Обновить ядро Linux командой run flash_kern:**

 SMG4>> run flash_kern
 Using egiga1 device
 TFTP from server 192.168.2.5; our IP address is 192.168.2.2
 Filename 'smg4/smg4_kernel'.
 Load address: 0x2000000
 Loading: ###
 done
 Bytes transferred = 3220040 (312248 hex)
 NAND erase: device 0 offset 0x0, size 0xa00000
 Erasing at 0x9e0000 -- 100% complete.
 OK
 NAND write: device 0 offset 0x0, size 0x312248
 3220040 bytes written: OK
 SMG4>>

12. **Обновить файловую систему командой run flash_initrd:**

 SMG4>> run flash_initrd
 Using egiga1 device
 TFTP from server 192.168.2.5; our IP address is 192.168.2.2
 Filename 'smg4/smg4_initrd'.
 Load address: 0x2880000
 Loading: ###
 done
 Bytes transferred = 12727152 (c23370 hex)
 NAND erase: device 0 offset 0xa00000, size 0x4000000
 Erasing at 0x49e0000 -- 100% complete.
 OK
 NAND write: device 0 offset 0xa00000, size 0xc23370
 12727152 bytes written: OK
 SMG4>>

13. **Запустить устройство командой run bootcmd.**
ПРИЛОЖЕНИЕ В. ПРИМЕРЫ РАБОТЫ МОДИФИКАТОРОВ И НАСТРОЙКИ УСТРОЙСТВА ЧЕРЕЗ СЛ

Примеры работы модификаторов

Задача 1

В транковой группе 0 для исходящего набора, соответствующего маске (1x(4,6)) необходимо сделать преобразование – удалить первую цифру, на ее место добавить цифры 34, остальные цифры не изменять.

Составление правила модификации

Под данную максу попадают все 5-ти, 6-ти и 7-значные номера, начинающиеся на 1. В соответствии с синтаксисом правило модификации будет иметь вид: «.+34xxxx??» (символ «.» на первой позиции – удаление первой цифры, «+34» – добавление после нее цифр 34, «xxxx» – следующие 4 цифры будут присутствовать всегда и не модифицируются, «??» – последние 2 цифры могут отсутствовать в случае 5-значного номера, но если номер 6-ти или 7-значный, то одна или две цифры на этих позициях есть, и они не модифицируются).

Используемые команды:

SMG4> config // входим в режим конфигурирования
Entering configuration mode
SMG4-[CONFIG]> new modifiers-table // создаем новую таблицу модификаторов
NEW 'MOD-TABLE' [01]: successfully created // создалась таблица с номером 1
SMG4-[CONFIG]> modifiers table 1 // Входим в режим конфигурирования таблицы № 1
Entering modifiers-table mode.
SMG4-[CONFIG]-MODTABLE[1]> add (1x{4,6}) ".+34xxxx??" // добавляем модifikator – максу номера и правило преобразования
Modifier. add
Modifier. Create: mask <(1x{4,6})>, cld-rule <.+34xxxx\?\?>, clg-rule <$>
NEW 'MODIFIER' [07]: successfully created
Modifier. Created with index [7].
'MODIFIER' [07]:
table: 1
mask: (1x{4,6})
umtype: any
AONcat: any
general-access: no change
general-numplan: no change
called-rule: .+34xxxx??
called-type: no change
called-numplan: no change
calling-rule: $
calling-type: no change
calling-numplan: no change
calling-present: no change
calling-screen: no change
calling-catAON: no change
SMG4-[CONFIG]-MODTABLE[1]> exit // выходим из режим. конфигурирования таблицы модификаторов
Back to configuration mode.
SMG4-[CONFIG]> trunk group 0 // входим в режим конфигурирования транковых групп
Entering trunk-mode
SMG4-[CONFIG]-TRUNK[0]> modifiers table outgoing called 1 // добавляем созданную таблицу модификации для преобразования номера СдПН по исходящей связи.
Trunk[0]. Set oModCld '1'
'TRUNK GROUP' [00]:
name: TrunkGroup00
disable out: no
disable in: no
Задача 2
В транковой группе 0 из номера вызывающего абонента, принятого в национальном формате с кодом зоны 383, необходимо удалить код зоны и поменять тип номера на абонентский «subscriber».

Составление правила модификации:
Номер в национальном формате – 10-значный и начинается с цифр 383, поскольку значения остальных семи цифр могут быть любыми, то на их месте прописывается «ххххххх». Полученная маска (383ххххххх). Необходимо удалить код зоны — то есть первые 3 цифры, остальные цифры остаются без изменения, полученное правило модификации: «...ххххххх». Модификация категории выполняется командой change (в примере команд, приведенных ниже, командой add был добавлен входящий модификатор с номером 8, поэтому в команде модификации категории change нужно использовать модификатор 8).

Используемые команды

SMG4> config // входим в режим конфигурирования
Entering configuration mode
SMG4-[CONFIG]> new modifiers-table // создаем новую таблицу модификаторов
NEW 'MOD-TABLE' [02]: successfully created // создалась таблица с номером 2
SMG4-[CONFIG]> modifiers table 2 // Входим в режим конфигурирования таблицы № 2
Entering modifiers-table mode.
Создался модификатор с номером 8
Modifier. add
Modifier. Create: mask <(383xxxxxxx)>, cld-rule <$>, clg-rule <...xxxxxxx>
NEW 'MODIFIER' [08]: successfully created
Modifier. Created with index [8].
'MODIFIER' [08]:
table: 2
mask: (383xxxxxxx)
numtype: any
AONcat: any
general-access: no change
general-numplan: no change
called-rule: $
called-type: <no-change>
called-numplan: no change

calling-rule: ...xxxxxxx
calling-type: <no-change>
calling-numplan: no change
Цифровой шлюз SMG

calling-present: no change
calling-screen: no change
calling-catAON: no change

SMG-{CONFIG}-MODTABLE[2] > **change calling type 8 subscriber** // меняем тип номера вызывающего абонента на subscriber

Modifier. change_clg_type 'MODIFIER' [08]:

table:	2
mask:	(383xxxxxxx)
numtype:	any
AONcat:	any
general-access:	no change
general-numplan:	no change
called-rule:	$
called-type:	<no-change>
called-numplan:	no change
calling-rule:	...xxxxxxx
calling-type:	<subscriber>
calling-numplan:	no change
calling-present:	no change
calling-screen:	no change
calling-catAON:	no change

SMG-{CONFIG}-MODTABLE[2] > **exit** // выходим из режим конфигурирования таблицы модификаторов

Back to configuration mode.

SMG-{CONFIG} > **trunk group 0** // входим в режим конфигурирования транковых групп

Entering trunk-mode

SMG-{CONFIG}-TRUNK[0] > **modifiers table incoming calling 2** // добавляем созданную таблицу модификации для преобразования номера CgPN по входящей связи.

Trunk[0]. Set iModCld '7'

'MODIFIER GROUP' [00]:

name:	TrunkGroup00
disable out:	no
disable in:	no
reserv trunk:	none
direct_pfx:	none
RADIUS-profile:	none
destination:	Linkset [0]
local:	no

Modifiers:

incoming calling:	2
incoming called:	none
outgoing calling:	none
outgoing called:	none
outgoing redir:	none
outgoing orig-cld:	none
outgoing generic num:	none

use in-band message: no
connected-num transit: normal
Пример настройки устройства через CLI

Задача

Настроить транзит ОКС7-SIPT

Исходные данные

Физически поток со встречной АТС подключен к нулевому потоку E1 на SMG.

Параметры сигнализации ОКС7:
- OPC=67;
- DPC=32;
- режим сигнализации – связанный, то есть DPC для MTP3 и ISUP будет одинаковый;
- сигнальный канал SLC=1 в каналном интервале 1;
- нумерация CIC с 2 по 31, соответственно для каналов 2 по 31;
- порядок занятия каналов – «последовательно вперед, четные» (соответственно для исключения взаимных занятий каналов на встречной стороне должен быть назначен порядок занятия каналов, например, «последовательно назад, нечетные»).

Параметры сигнализации SIP-T:
- IP-адрес взаимодействующего шлюза – 192.168.16.7;
- UDP порт для приема сигнализации SIP-T взаимодействующего шлюза – 5060;
- количество разрешенных одновременных сессий – 25;
- время пакетизации для кодека G.711 – 30 мс;

Маршрутизация:
- маршрут на ОКС7 по транковой группе 0;
- маршрут на SIP-T по транковой группе 1;
- выход на ОКС7 осуществляется по 7мизначным номерам, начинающимся на цифры 6, 7, 91, 92, 93;
- выход на SIP-T осуществляется по 7ми значным номерам, начинающимся на цифры 1, 2, 3;
- все сообщения сигнализации ОКС-7 передаются транзитом.

Настройка через CLI:

Настройка параметров сигнализации ОКС-7:

```bash
SMG4> config // входим в режим конфигурирования
SMG4-[CONFIG]> new linkset // создаем новую группу линий(линксет)
NEW 'LINKSET' [00]: successfully created
SMG4-[CONFIG]> linkset 0 // входим в режим конфигурирования линксета
Entering Linkset-mode.
SMG4-[CONFIG]-LINKSET[0]> chan_order even_successive_forward // выбираем порядок занятия каналов – четные, по кругу вперед
Linkset[0]. Set chan_order '6'
SMG4-[CONFIG]-LINKSET[0]> DPC ISUP 32 // задаем код встречного пункта обработки ISUP сигнализации
SMG4-[CONFIG]-LINKSET[0]> OPC 67 // задаем код собственного пункта сигнализации
SMG4-[CONFIG]-LINKSET[0]> init group-reset // выбираем режим инициализации каналов при подъеме сигнального канала
SMG4-[CONFIG]-LINKSET[0]> net_ind national // задаем индикатор сети – местная сеть
SMG4-[CONFIG]-LINKSET[0]> 'LINKSET' [00]:
Name: Linkset00
```
Цифровой шлюз SMG

Trunk: 1
Access cat: 0
OPC: 67
DPC: 32
init: 'group reset'
china: n
chan_order: 'even_successive_forward'
netw_ind: national
satellite: override_no_satellite
terwork: no change
TMR: speech
alarm ind: no
CCI: off
CCI freq: 3

Leaving Linkset mode

Leaving E1-stream mode

Leaving SS7-signaling mode

Leaving E1-stream mode
Настройка параметров сигнализации SIP-T (продолжение описанной выше сессии):

```
SMG4-[CONFIG] > new sipt-interface // создаем новый SIP-T интерфейс
SMG4-[CONFIG] > sip interface 0 // входим в режим конфигурирования созданного интерфейса SIP-T

Entering SIPT-mode.

SMG4-[CONFIG]-SIPT/SIPT/INTERFACE[0] > hostname set 192.168.16.7
// задаем IP-адрес взаимодействующего шлюза

SIPT-Interface[0]. Set ipaddr '192.168.16.7'

SMG4-[CONFIG]-SIPT/SIPT/INTERFACE[0] > port destination 5060
// задаем транспортный порт взаимодействующего шлюза для работы по сигнализации SIP-T

SIPT-Interface[0]. Set port '5060'

SMG4-[CONFIG]-SIPT/SIPT/INTERFACE[0] > codec set 0 G.711-a // задаем кодек

SIPT-Interface[0]. Set codec '0'

SMG4-[CONFIG]-SIPT/SIPT/INTERFACE[0] > codec pte 0 30 // задаем время пакетизации 30 мс для кодека G.711

SIPT-Interface[0]. Set pte '30'

SMG4-[CONFIG]-SIPT/SIPT/INTERFACE[0] > max active 25 // задаем количество одновременных сессий

SIPT-Interface[0]. Set max active '25'

SMG4-[CONFIG]-SIPT/SIPT/INTERFACE[0] > DTMF mode RFC2833
// выбираем метод передачи DTMF – RFC2833

SIPT-Interface[0]. Set DTMF_type '1'

SMG4-[CONFIG]-SIPT/SIPT/INTERFACE[0] > DTMF payload 101 // выбираем тип нагрузки 101 для RFC2833

SIPT-Interface[0]. Set DTMF_PT '101'

'SIP/SIPT INTERFACE' [00]:   id[00]
   name:             SIP-interface00
   mode:             SIP-T
   trunk:            0
   access category:  0
   ip:port:          192.168.16.7:5060
   login / password:   <not set> / <not set>

   codecs:
       0 :
           codec:   G.711-A
           ptype:   8
           pte:     30

   max active:       25
   VAD/CNG:          no
   Echo cancel:      voice (default)
   DSCP RTP:         0
   DSCP SIG:         0
   RTCP period:      0
   RTCP control:     0
   RTP loss timeout: off
   DTMF MODE:        RFC2833
   DTMF PType:       101
   DTMF MIMETYPE:    application/dtmf
   CCI:              off
   Redirect (302):   disabled
   REFER:            disabled
   Session Expires:  1800
   Min SE:           90
   Refresher:        uac
   Rport:            disabled
   Options:          disabled:0
   FAX-detect:       no detecting
   FAX-mode:         none
   VBD:              disabled
   Jitter buffer adaptive mode
```
Цифровой шлюз SMG

Настройка маршрутизации (продолжение описанной выше сессии):

SMG4-[CONFIG] > new trunk // создаем транковую группу для группы линий ОКС7
SMG4-[CONFIG] > new trunk // создаем транковую группу для работы через SIP-T интерфейс
SMG4-[CONFIG] > numplan // переходим в режим конфигурирования плана нумерации
SMG4-[CONFIG] > PREFIX [00]: successfully created
SMG4-[CONFIG]-[NUMPLAN] > create prefix 0 // создаем префикс для выхода в направлении ОКС7 в плане нумерации 0
SMG4-[CONFIG] > PREFIX [00]: successfully created
SMG4-[CONFIG]-[NUMPLAN] > create prefix 0 // создаем префикс для выхода в направлении SIP-T в плане нумерации 0
SMG4-[CONFIG] > PREFIX [00]: successfully created
SMG4-[CONFIG]-[NUMPLAN] > exit // выходим из режима конфигурирования плана нумерации
SMG4-[CONFIG] > trunk group 0 // входим в режим конфигурирования транковой группы для группы линий ОКС7
Entering trunk-mode
SMG4-[CONFIG]-TRUNK[0] > destination SS7 0 // связываем транковую группу 0 с группой линий ОКС 0
Trunk[0]. Set destination '2'
'TRUNK GROUP' [00]:

 name: TrunkGroup00
disable out: no
disable in: no
reserv trunk: none
direct_pfx: none
RADIUS-profile: none
destination: Linkset [0]

Modifiers:
incoming calling: none
incoming called: none
outgoing calling: 0
outgoing called: 0
outgoing redirecting: none
outgoing orig-called: none
outgoing generic num: none

use in-band message: no
connected-num transit: normal

// выходим из режима конфигурирования транковой группы для группы линий ОКС7
Leaving TRUNK mode

SMG4-[CONFIG] > trunk group 1 // входим в режим конфигурирования транковой группы для SIP-T интерфейса
Entering trunk-mode
SMG4-[CONFIG]-TRUNK[1] > destination SIPT 0 // связываем транковую группу 1 с SIP-T интерфейсом 0
Trunk[1]. Set destination '3'
Trunk[1]. Same destination
'TRUNK GROUP' [01]:

 name: TrunkGroup01
disable out: no
disable in: no
reserv trunk: none
Цифровой шлюз SMG

direct_pfx:	none
RADIUS-profile:	none
destination:	SIPT-Interface [0]

Modifiers:
- incoming calling: none
- incoming called: none
- outgoing calling: 0
- outgoing called: 0
- outgoing redirecting: none
- outgoing orig-called: none
- outgoing generic num: none

use in-band message: no
connected-num transit: normal

SMG4-[CONFIG]-TRUNK [1]>

// выходим из режима конфигурирования транковой группы для SIP-T интерфейса
Leaving TRUNK mode

SMG4-[CONFIG]>

// входим в режим конфигурирования префикса для выхода на транковую группу 0
Entering Prefix-mode

SMG4-[CONFIG]-[NUMPLAN]>

// входим в режим конфигурирования префикса для выхода на транковую группу 0
Entering Prefix-mode

Prefix[0]. Set type '1'

SMG4-[CONFIG]-[NUMPLAN]-PREFIX[0]>

// назначаем выход по префиксу на транковую группу 0
Prefix[0]. Set idx '0'

// входим в режим редактирования масок набора и анализа номеров вызывающих абонентов
Entering Prefix-Mask mode

Prefix[0]. Set cdpn_type '5'

// устанавливаем транзит для типа номера вызываемого абонента
Prefix[0]. Set cdpn_type '5'

// добавляем маску набора в соответствии с заданием
PrefixMask. add
NEW 'PREFIX-MASK' [00]: successfully created
PrefixMask. Created with index [00].

Prefix[0]:

- prefix: 0
- type: called
- Ltimer: 10
- Stimer: 5
- Duration: 30

SMG4-[CONFIG]-[NUMPLAN]-PREFIX[0]>

// выводим из режима редактирования масок набора и анализа номеров вызывающих абонентов
Leaving Prefix-Mask mode

// устанавливаем транзит для типа номера вызываемого абонента
Prefix[0]. Set cdpn_type '5'

// выводим из режима конфигурирования транковой группы для SIP-T интерфейса
Leaving TRUNK mode
Цифровой шлюз SMG

Цифровой шлюз SMG

Stimer: 5
Duration: 30

SMG4-[CONFIG]-[NUMPLAN]-PREFIX[0]> exit // выходим из режима конфигурирования префикса

Leaving Prefix mode

SMG4-[CONFIG]-[NUMPLAN] > prefix 1
// входим в режим конфигурирования префикса для выхода на транковую группу 1

Entering Prefix-mode

Prefix[1]. Set type '1'

SMG4-[CONFIG]-[NUMPLAN] -PREFIX[1]> trunk 1 // назначаем выход по префиксу на транковую группу 1

Prefix[1]. Set idx '1'

SMG4-[CONFIG]-[NUMPLAN] -PREFIX[1]> mask edit // входим в режим редактирования масок набора и анализа номеров вызывающих абонентов

Entering Prefix-Mask mode

SMG4-[CONFIG]-[NUMPLAN] -PREFIX[1]-MASK> add ([1-3]xxxxx)
// добавляем маску набора в соответствии с заданием

PrefixMask. add
NEW 'PREFIX-MASK' [01]: successfully created
PrefixMask. Created with index [01].
'PREFIX-MASK' [01]:

mask: ([1-3]xxxxx)
prefix: 1
type: called
Ltimer: 10
Stimer: 5
Duration: 30

SMG4-[CONFIG]-[NUMPLAN] -PREFIX[1]-MASK> exit // выходим из режима редактирования масок набора и анализа номеров вызывающих абонентов

Leaving Prefix-Mask mode

SMG4-[CONFIG]-[NUMPLAN] -PREFIX[1]> called transit // устанавливаем транзит для типа номера вызываемого абонента

Prefix[1]. Set called '5'

'PREFIX' [01]:

name: 'Prefix#01'
type: 'trunk'
idx: 0
access cat: 0 [no check]
direction: 'local'
CdPN type: '<no-change>'
CdPN npi: 'isdn/telephony'
get CID: n
need CID: n
dial mode: no change
not dial ST: no
priority: 100
Stimer: 5
Ltimer: 10
duration: 30
PLAN: 0

Mask for prefix [01]:
[001] - [called]
mask: ([1-3]xxxxx)
Ltimer: 10
Stimer: 5
Duration: 30

Leaving Prefix mode

SMG4-[CONFIG]-[NUMPLAN] > exit // выходим из режима конфигурирования плана нумерации

SMG4-[CONFIG]> exit
Leaving configuration mode.

Сохранение конфигурации и перезапуск устройства (продолжение описанной выше сессии):

SMG4> save // сохраняем конфигурацию

tar: removing leading '/' from member names

*****Saved successful
SMG4> reboot yes // перезагружаем устройство
Входящий вызов из IP- либо TDM-канала поступает на входящий интерфейс, далее в транковой группе (ТГ) посредством протокола RADIUS (если используется) определяется возможность дальнейшей маршрутизации вызова. В ТГ производятся модификации номеров при входящей связи, после чего вызов по префиксу маршрутизируется в исходящий канал либо на SIP-абонента. Если во входящей ТГ настроен "прямой префикс", то вызов маршрутизируется в исходящую ТГ, настроенную в параметрах этого префикса, без анализа номеров вызывающего и вызываемого абонентов. В исходящей ТГ производятся модификации номеров, после чего вызов поступает в исходящий интерфейс/канал. Если исходящее направление недоступно, то вызов будет направлен по резервному направлению (если настроено).
ПРИЛОЖЕНИЕ Д. РЕКОМЕНДАЦИИ ПО РАБОТЕ SMG В ПУБЛИЧНОЙ СЕТИ

При работе SMG в публичной сети необходимо позаботиться о безопасности устройства во избежание подбора паролей (bruteforce), DoS (DDoS) атак и других действий злоумышленников, которые могут привести к нестабильной работе оборудования, краже абонентских данных, к попыткам совершения вызовов за чужой счет, и как следствие к принесению ущерба как провайдеру, предоставляющему услуги связи, так и абонентам.

Применение SMG в публичной сети нежелательно без использования дополнительных средств защиты, таких как пограничный контроллер сессий (SBC), межсетевой экран (firewall) и прочее.

Рекомендаций по работе SMG в публичной сети:

– не рекомендуется работа в публичной сети с портом по умолчанию 5060 для сигнализации SIP. Для изменения этого параметра необходимо в настройках «Интерфейсы SIP» поменять значение параметра «Порт для приема SIP сигнализации» в общей конфигурации SIP и настройках интерфейсов SIP. Данная настройка не обеспечит полную защищенность, поскольку при сканировании сигнальный порт все равно может быть обнаружен;

– если известны IP-адреса всех взаимодействующих с SMG устройств, то при помощи утилиты iptables необходимо сконфигурировать разрешающие правила для этих адресов, а доступ для остальных адресов необходимо запретить.

Также необходимо сконфигурировать fail2ban.

Fail2ban отслеживает в log-файле (/tmp/log/pbx_sip_bun.log) неудачные попытки обращения по протоколу SIP и в случае превышения количества этих попыток заданной величины доступ для IP-адреса, с которого были произведены эти неудачные попытки, блокируется на заданное время. В утилите также имеется возможность создания списка доверенных и недоверенных адресов. Подробное описание приведено в разделе 4.1.11.1.
ПРИЛОЖЕНИЕ Е. ВЗАИМОДЕЙСТВИЕ УСТРОЙСТВА С СИСТЕМАМИ МОНИТОРИНГА

Для возможности отслеживания в реальном времени аварийных ситуаций, возникающих на устройстве необходимо настроить работу с системой мониторинга.

Отсутствие каких-либо аварий считается нормальной работой, при возникновении аварийного события состояние устройства меняется на аварийное, при нормализации всех текущих аварий восстанавливается нормальное рабочее состояние.

Возможные индикации состояния устройства:
– световая индикация на лицевой панели – светодиод Alarm (индикация светодиода Alarm описана в разделе 1.6 Световая индикация),
– индикация самой критичной аварии в шапке web-интерфейса (более подробная информация приведена в журнале работы),
– передача событий об авариях в систему мониторинга по протоколу SNMP (trap, inform).

События, по которым генерируются аварийные состояния, делятся на безусловные и опциональные:
– Безусловные – аварии, выдача индикации о которых не конфигурируется, к ним относятся:
 – CONFIG – критическая авария, авария файла конфигурации;
 – SIP-T-MODULE – критическая авария, авария программного модуля, отвечающего за работу IP-телефонии;
 – SM-VP DEVICE – авария, неисправность IP-субмодуля SM-VP;
 – SYNC – авария при пропадании источника синхронизации либо предупреждение при работе от низкоприоритетного источника синхронизации;
 – CDR-FTP – критическая авария, авария либо предупреждение, возникает при ошибке передачи данных CDR на FTP-сервер, уровень аварии определяется объемом данных CDR ожидающих передачи на сервер;
 – TRANSIT – критическая авария, возникает при ошибке установления полупостоянного соединения для транзита канала потока E1.

– Опциональные – аварии, выдача индикации о которых конфигурируется соответствующими настройками, к ним относятся:
 – STREAM – критическая авария, поток E1 не в работе;
 – STREAM-REMOTE – предупреждение, удаленная авария потока E1;
 – STREAM-SLIP – предупреждение, на потоке проскальзывания;
 – LINKSET – критическая авария, группа линий ОКС7 не в работе;
 – SS7LINK – авария, проблемы по сигнальному каналу ОКС7;
 – SIP-ACCESS – авария доступности встречного шлюза по SIP – интерфейсу;
 – CPU-OVERLOAD – авария загрузки процессора;
 – MEMORY-LIMIT – авария отсутствия свободной оперативной памяти;
 – DRIVE-LIMIT – авария отсутствия свободной памяти на внешнем накопителе.

По умолчанию индикация об опциональных авариях отключена, т.е. при взаимодействии с системами мониторинга необходимо сконфигурировать индикацию аварий по всем необходимым объектам.

Для взаимодействия с системой мониторинга по протоколу SNMP на устройстве необходимо включить протокол SNMP и настроить выдачу сообщений SNMP TRAP или INFORM на IP-адрес сервера мониторинга.
Настройка параметров через web-конфигуратор

1) Настройка индикации опциональных аварий при конфигурировании потока E1 (меню «Потоки E1/Физические параметры», см. раздел 4.1.5.2 Настройка физических параметров).

Для индикации аварий LOS, AIS на потоке E1 необходимо установить флаг «Индикация Alarm».
Для индикации аварии RAI необходимо установить флаг «Индикация Remote Alarm».
Для индикации о проскальзываниях (SLIP) на потоке необходимо поставить флаг «Индикация SLIP» и настроить таймер обнаружения SLIP.

2) Настройка индикации опциональных аварий при конфигурировании группы линий ОКС-7 (меню «Потоки E1/Группа линий ОКС7», см. раздел 4.1.5.4 Настройка протокола сигнализации ОКС-7 (SS7)).

Для индикации аварии о неработоспособности сигнального звена ОКС-7 необходимо установить флаг «Индикация аварии».

3) Включение протокола SNMP производится в меню «Настройки TCP/IP/Сетевые параметры» (раздел 4.1.8.10 Сетевые параметры).
Для настройки необходимо установить флаг «Использовать SNMP».

4) Настройка выдачи SNMP трапов производится в меню «Сетевые сервисы/SNMP» (раздел 4.1.9.2 Настройка трапов (SNMP trap)).

Для настройки необходимо указать тип SNMP сообщения (TRAPv1, TRAPv2, INFORM), пароль (Community), IP-адрес и порт приемника трапов SNMP.

После настройки и применения конфигурации необходимо перезапустить SNMP-агента, нажав на кнопку «Перезапустить SNMPd».
ПРИЛОЖЕНИЕ Ж: НАСТРОЙКА ТРАНЗИТА КАНАЛОВ ПОТОКА E1 ЧЕРЕЗ ПОЛУПОСТОЯННОЕ СОЕДИНЕНИЕ

Принцип работы

На подключенном к SMG потоке E1 отбираются каналы для транзита через SIP-интерфейс. С этого интерфейса SMG отправляет запрос на установление соединения с удалённой SMG. Удалённая SMG принимает запрос на соединение и проключает голосовой тракт с соответствующим каналом одного из потоков. После этого вся голосовая информация, приходящая в выбранном КИ, будет передаваться через соединение на вторую сторону (и, соответственно, со второй стороны на первую).

После установления соединения SMG будет контролировать его активность и пытаться восстановить связь при разрыве. Целостность соединения и доступность удалённой стороны контролируется следующими способами:

– отправка запросов OPTIONS;
– обновление таймеров сессии по RFC4028;
– контроль активности сессии по протоколу RTCP;
– контроль наличия RTP-пакетов от удалённой стороны.

Задача

Настроить связь между двумя TA на географически разнесённых объектах.

Исходные данные

– Два удалённых объекта, связанных сетью Ethernet;
– На первом объекте TA подключен через абонентский комплект мультиплексора Маком-MX и смультплексирован в канал 1, поток подключен к SMG в нулевой порт E1;
– IP-адрес SMG на первом объекте 192.0.2.1;
– На втором объекте TA подключен через абонентский комплект мультиплексора Маком-MX и смультплексирован в канал 4, поток подключен к SMG в первый порт E1;
– IP-адрес SMG на втором объекте 192.0.2.2.

Рисунок 11 - Схема связи объектов
На принимающей соединение SMG необходимо произвести следующие действия:

1. Создать в разделе "Маршрутизация -> Интерфейсы SIP" новый интерфейс:
 1.1 Установить на нём режим работы "Транзит E1";
 1.2 Задать IP-адрес удалённой стороны;
 1.3 Задать порт назначения сигнализации на удалённой стороне;
 1.4 Задать порт приёма сигнализации;
 1.5 Выбрать сетевые интерфейсы сигнализации и RTP;
 1.6 При необходимости на вкладке "Настройка кодеков/RTP" выбрать нужные кодеки.
 1.7 Нажать кнопку "Применить"

2. В разделе "Потоки E1" выбрать нужный поток и произвести на нём следующие настройки:
 2.1 Протокол сигнализации - ОКС-7;
 2.2 Физические параметры - Включен;
 2.3 Перейти на вкладку "Настройки каналов";
 2.4 На нужном канале нажать кнопку "Настроить" в колонке "Транзит";
 2.5 Выставить активным флажок "Включить транзит";
 2.6 Выбрать кодек, который будет использоваться для соединения. При выборе значения "по-умолчанию" будут использоваться кодеки, заданные на выбранном SIP-интерфейсе.
 2.7 Выбрать интерфейс SIP, который был настроен на шаге 1;
 2.8 Задать поток E1 и номер канала - это поток и канал на удалённой стороне, к которому будет производиться подключение;
 2.9 Нажать кнопку "Применить" в окне настройки транзита;
 2.10 Нажать кнопку "Применить" в окне настройки каналов.

На устанавливающей соединение SMG необходимо повторить все шаги пунктов 1 и 2, только перед выполнением пункта 2.9 выставить флаг "Активная сторона". Сразу после этого SMG попытается установить соединение.

Просмотреть статус соединения можно в разделе "Мониторинг -> Мониторинг каналов E1".

Пример настройки соединения через CLI

На первом объекте

// Конфигурация SIP-интерфейса
// Вход в режим конфигурации
SMG4> config
Entering configuration mode.
// Создание SIP-интерфейс для транзита
SMG4-[CONFIG]> new sipt-interface
NEW 'SIP/SIPT_INTERFACE' [11]: successfully created
// Вход в режим конфигурирования SIP-интерфейса
SMG4-[CONFIG]> sip interface 11
Entering SIPT-mode.
// Установка режима транзита каналов E1
SIPT-Interface[11]. Set SIP_mode '4'
// Установка адреса встречной стороны
SMG4-[CONFIG]-SIP/SIPT/SIPI-INTERFACE[11]> hostname set 192.0.2.2
SIPT-Interface[11]. Set hostname '192.0.2.2'
// Установка порта встречной стороны
SIPT-Interface[11]. Set dstport '5060'
// Установка локального порта
SIPT-Interface[11]. Set srcport '5060'
// Установка интерфейса для сигнализации
// Конфигурация потока Е1 и канала для транзита

SMG4-[CONFIG]> e1 0
Entering E1-stream mode

// Установка сигнализации ОКС-7

SMG4-[CONFIG]> e1[0]. Set Signaling 3

// Включение потока

SMG4-[CONFIG]> e1[0]. Set line 'on'

// Вход в режим конфигурирования ОКС-7

SMG4-[CONFIG]> e1[0]. Signaling is SS7

// Включение режима транзита

SMG4-[CONFIG]> e1[0]-[ss7]. transit set usage 1 yes

Transit:
01: remote stream [0] remote channel [1] role 'passive' codec '.............
NONE' SIP Interface [00] 'incoming'

// Установка SIP-интерфейса для транзита

SMG4-[CONFIG]> e1[0]-[ss7]. transit set sip_interface 1 11

Transit:
01: remote stream [0] remote channel [1] role 'passive' codec '.............

// Установка номера канала на встречной стороне

SMG4-[CONFIG]> e1[0]-[ss7]. transit set remote_channel 1 4

Transit:
01: remote stream [0] remote channel [4] role 'passive' codec '.............

// Вход в режим конфигурирования ОКС-7

SMG4-[CONFIG]> e1[0]-[ss7]. exit
Leaving SS7-signaling mode.

// Выход из режима конфигурирования SIP-interfейса для транзита

SMG4-[CONFIG]> e1[0]. Set line 'off'

// Выход из режима конфигурирования ОКС-7

SMG4-[CONFIG]> e1[0]. exit
Leaving E1-stream mode.

// Выход из режима конфигурирования

SMG4-[CONFIG]> exit
Leaving configuration mode.

На втором объекте

// Конфигурация SIP-интерфейса

SMG4> config
Entering configuration mode.

// Создание SIP-интерфейса для транзита

SMG4-[CONFIG]> new sipt-interface
NEW 'SIP/SIPT INTERFACE' [2]: successfully created

// Вход в режим конфигурирования SIP-интерфейса

SMG4-[CONFIG]> sip interface 2
Entering SIPT-mode.

// Установка режима транзита каналов E1
SIPT-Interface[2]. Set SIP mode '4'

// Установка адреса встречной стороны
SMG4-[CONFIG]-SIP/SIPT/SIPI-INTERFACE[2]> hostname set 192.0.2.1
SIPT-Interface[2]. Set hostname '192.0.2.2'

// Установка порта встречной стороны
SMG4-[CONFIG]-SIP/SIPT/SIPI-INTERFACE[2]> port destination 5060
SIPT-Interface[2]. Set dstport '5060'

// Установка локального порта
SIPT-Interface[2]. Set srcport '5060'

// Установка интерфейса для сигнализации
SMG4-[CONFIG]-SIP/SIPT/SIPI-INTERFACE[2]> net-interface sig eth0
SIPT-Interface[2]. Set netiface_sig 'eth0'

// Установка интерфейса для медиа
SMG4-[CONFIG]-SIP/SIPT/SIPI-INTERFACE[2]> net-interface rtp eth0
SIPT-Interface[2]. Set netiface_rtp 'eth0'

// Завершение конфигурирования SIP-интерфейса
SMG4-[CONFIG]-SIP/SIPT/SIPI-INTERFACE[2]> exit

Leaving SIPT mode.

Exiting SIPT-mode.

// Конфигурация потока E1 и канала для транзита
// Вход в режим конфигурирования потока E1
SMG4-[CONFIG]> e1 1
Enetering E1-stream mode

// Установка сигнализации ОКС-7
SMG4-[CONFIG]-E1[1]> signaling ss7
E1[1]. Set Signaling 3

// Включение потока
SMG4-[CONFIG]-E1[1]> enabled
E1[1]. Set line 'on'

// Вход в режим конфигурирования ОКС-7
SMG4-[CONFIG]-E1[1]> ss7
E1[1]. Signaling is SS7

// Установка режима транзита
SMG4-[CONFIG]-E1[1]-[SS7]> transit set usage 4 yes
Transit:
 04: remote stream [0] remote channel [1] role 'passive' codec '.............'
 NONE' SIP Interface [00] 'test'

// Установка SIP-интерфейса для транзита
SMG4-[CONFIG]-E1[1]-[SS7]> transit set sip_interface 4 2
Transit:
 04: remote stream [0] remote channel [1] role 'passive' codec '.............'
 NONE' SIP Interface [02] 'SIP-interface2'

// Установка номера канала на встречной стороне
SMG4-[CONFIG]-E1[1]-[SS7]> transit set remote_channel 4 1
Transit:
 04: remote stream [0] remote channel [1] role 'passive' codec '.............'
 NONE' SIP Interface [02] 'SIP-interface2'

// Установка номера потока на встречной стороне
SMG4-[CONFIG]-E1[1]-[SS7]> transit set remote_stream 4 0
Transit:
 04: remote stream [0] remote channel [1] role 'passive' codec '.............'
 NONE' SIP Interface [02] 'SIP-interface2'

// Установка активного режима для транзита
SMG4-[CONFIG]-E1[1]-[SS7]> transit set active 1 yes
Transit:
 04: remote stream [0] remote channel [1] role 'active ' codec '.............'
 NONE' SIP Interface [02] 'SIP-interface2'

// Выход из режима конфигурирования ОКС-7
SMG4-[CONFIG]-E1[1]-[SS7]> exit
Leaving SS7-signaling mode.
// Выход из режима конфигурирования потока E1
SMG4-[CONFIG]-E1[1]> exit
Leaving E1-stream mode.
// Выход из режима конфигурирования
SMG4-[CONFIG]> exit
Leaving configuration mode.
Цифровой шлюз SMG

ПРИЛОЖЕНИЕ 3. УПРАВЛЕНИЕ И МОНИТОРИНГ ПО ПРОТОКОЛУ SNMP.

Шлюз поддерживает мониторинг и конфигурирование при помощи протокола SNMP (Simple Network Management Protocol).

Реализованы следующие функции мониторинга:
- сбор общей информации об устройстве, установленном ПО, показаний датчиков;
- состояние потоков E1 и их каналов;
- состояние VoIP-субмодулей и их каналов;
- состояние линксетов ОКС-7;
- состояние SIP-интерфейсов.

Реализованы следующие функции управления:
- обновление программного обеспечения устройства;
- сохранение текущей конфигурации;
- перезагрузка устройства;
- управление SIP-абонентами;
- управление группами динамических SIP-абонентов.

В таблицах с описанием OID в колонке “запросы” будет принят следующий формат описания:
- Get – значение объекта или дерева можно прочитать, отправив GetRequest.
- Set – значение объекта можно установить, отправив SetRequest (обратите внимание, при установке значения через SET к OID следует привести к виду “OID.0”);
- {} – имя объекта или OID;
- N – в команде используется числовой параметр типа integer;
- U – в команде используется числовой параметр типа unsigned integer;
- S – в команде используется строковый параметр;
- A – в команде используется IP-адрес (обратите внимание, некоторые команды, принимающие как аргумент IP-адрес, используют строковый тип данных “s”).

Таблица 3.1 – Примеры команд

<table>
<thead>
<tr>
<th>Описание запроса</th>
<th>Команда</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get {}</td>
<td>snmpwalk -v2c -c public -m +ELTEX-SMG $ip_smg activeCallCount</td>
</tr>
<tr>
<td>Get {}.x</td>
<td>snmpwalk -v2c -c public -m +ELTEX-SMG $ip_smg pmExist.1 snmpwalk -v2c -c public -m +ELTEX-SMG $ip_smg pmExist.2 и т.д.</td>
</tr>
<tr>
<td>Set {} N</td>
<td>snmpset -v2c -c public -m +ELTEX-SMG $ip_smg \ smgSyslogTracesCalls.0 i 60</td>
</tr>
<tr>
<td>Set {} 1</td>
<td>snmpset -v2c -c private -m +ELTEX-SMG $ip_smg smgReboot.0 i 1</td>
</tr>
<tr>
<td>Set {} U</td>
<td>snmpset -v2c -c public -m +ELTEX-SMG $ip_smg \ getGroupUserByID.0 u 2</td>
</tr>
<tr>
<td>Set {} S</td>
<td>snmpset -v2c -c private -m +ELTEX-SMG $ip_smg \ smgUpdateFw.0 s "smg1016m_firmware_3.8.0.1966.bin 192.0.2.2"</td>
</tr>
<tr>
<td>Set {} "NULL"</td>
<td>snmpset -v2c -c private -m +ELTEX-SMG $ip_smg \ getUserByNumber.0 s "NULL"</td>
</tr>
<tr>
<td>Set {} A</td>
<td>snmpset -v2c -c private -m +ELTEX-SMG $ip_smg \ smgSyslogTracesAddress.0 a 192.0.2.44</td>
</tr>
</tbody>
</table>
Примеры выполнения запросов:

Нижеприведённые запросы эквивалентны. На примере запроса объекта active Calls Count, который отображает число текущих вызовов на SMG.

```bash
$ snmpwalk -v2c -c public -m +ELTEX-SMG 192.0.2.1 activeCallCount
ELTEX-SMG::activeCallCount.0 = INTEGER: 22
```

```bash
$ snmpwalk -v2c -c public -m +ELTEX-SMG 192.0.2.1 smg.42.1
ELTEX-SMG::activeCallCount.0 = INTEGER: 22
```

```bash
$ snmpwalk -v2c -c public -m +ELTEX-SMG 192.0.2.1 1.3.6.1.4.1.35265.1.29.42.1
ELTEX-SMG::activeCallCount.0 = INTEGER: 22
```

```bash
$ snmpwalk -v2c -c public 192.0.2.1 1.3.6.1.4.1.35265.1.29.42.1
SNMPv2-SMI::enterprises.35265.1.29.42.1.0 = INTEGER: 22
```

Описание OID из MIB ELTEX-SMG

<table>
<thead>
<tr>
<th>Имя</th>
<th>OID</th>
<th>Запросы</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>smg</td>
<td>1.3.6.1.4.1.35265.1.29</td>
<td>Get {}</td>
<td>Корневой объект для дерева OID</td>
</tr>
<tr>
<td>smgDevName</td>
<td>1.3.6.1.4.1.35265.1.29.1</td>
<td>Get {}</td>
<td>Имя устройства</td>
</tr>
<tr>
<td>smgDevType</td>
<td>1.3.6.1.4.1.35265.1.29.2</td>
<td>Get {}</td>
<td>Тип устройства (всегда 29)</td>
</tr>
<tr>
<td>smgFwVersion</td>
<td>1.3.6.1.4.1.35265.1.29.3</td>
<td>Get {}</td>
<td>Версия ПО</td>
</tr>
<tr>
<td>smgEth0</td>
<td>1.3.6.1.4.1.35265.1.29.4</td>
<td>Get {}</td>
<td>IP-адрес основного интерфейса</td>
</tr>
<tr>
<td>smgUptime</td>
<td>1.3.6.1.4.1.35265.1.29.5</td>
<td>Get {}</td>
<td>Время работы ПО</td>
</tr>
</tbody>
</table>
| smgUpdateFw | 1.3.6.1.4.1.35265.1.29.25 | Set {} S| Обновление ПО. Для этого следует сделать запрос Set с параметрами (разделить пробелом):
| | | | - имя файла ПО без пробелов;
| | | | - адрес TFTP-сервера |
| smgReboot | 1.3.6.1.4.1.35265.1.29.27 | Set {} 1| Перезагрузка оборудования |
| smgSave | 1.3.6.1.4.1.35265.1.29.29 | Set {} 1| Сохранение конфигурации |
| smgFreeSpace | 1.3.6.1.4.1.35265.1.29.32 | Get {} | Свободное место на встроенной флэш-памяти |
| smgFreeRam | 1.3.6.1.4.1.35265.1.29.33 | Get {} | Количество свободной оперативной памяти |
| smgMonitoring| 1.3.6.1.4.1.35265.1.29.35 | Get {} | Отображение датчиков температуры |
| smgTemperature1 | 1.3.6.1.4.1.35265.1.29.35.1| Get {} | Температурный датчик 1 |
| smgTemperature2 | 1.3.6.1.4.1.35265.1.29.35.2| Get {} | Температурный датчик 2 |
Таблица 3.3 – Настройки syslog

<table>
<thead>
<tr>
<th>Имя</th>
<th>OID</th>
<th>Запросы</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>smgSyslog</td>
<td>1.3.6.1.4.1.35265.1.29.34</td>
<td>Get {}</td>
<td>Настройки syslog, корневой объект</td>
</tr>
<tr>
<td>smgSyslogTraces</td>
<td>1.3.6.1.4.1.35265.1.29.34.1</td>
<td>Get {}</td>
<td>Настройки трассировок в syslog, корневой объект</td>
</tr>
<tr>
<td>smgSyslogTracesAddress</td>
<td>1.3.6.1.4.1.35265.1.29.34.1.1</td>
<td>Get {} Set() S</td>
<td>IP-адрес сервера syslog для приёма трассировок</td>
</tr>
<tr>
<td>smgSyslogTracesPort</td>
<td>1.3.6.1.4.1.35265.1.29.34.1.2</td>
<td>Get {} Set() N</td>
<td>Порт сервера syslog для приёма трассировок</td>
</tr>
<tr>
<td>smgSyslogTracesAlarms</td>
<td>1.3.6.1.4.1.35265.1.29.34.1.3</td>
<td>Get {} Set() N</td>
<td>Уровень трассировки аварий 1-99 – включить трассировку; 0 – отключить трассировку</td>
</tr>
<tr>
<td>smgSyslogTracesCalls</td>
<td>1.3.6.1.4.1.35265.1.29.34.1.4</td>
<td>Get {} Set() N</td>
<td>Уровень трассировки вызовов 1-99 – включить трассировку; 0 – отключить трассировку</td>
</tr>
<tr>
<td>smgSyslogTracesISUP</td>
<td>1.3.6.1.4.1.35265.1.29.34.1.5</td>
<td>Get {} Set() N</td>
<td>Уровень трассировки ОКС-7/ISUP 1-99 – включить трассировку; 0 – отключить трассировку</td>
</tr>
<tr>
<td>smgSyslogTracesSIPT</td>
<td>1.3.6.1.4.1.35265.1.29.34.1.6</td>
<td>Get {} Set() N</td>
<td>Уровень трассировки SIPT 1-99 – включить трассировку; 0 – отключить трассировку</td>
</tr>
<tr>
<td>smgSyslogTracesQ931</td>
<td>1.3.6.1.4.1.35265.1.29.34.1.7</td>
<td>Get {} Set() N</td>
<td>Уровень трассировки Q.931 1-99 – включить трассировку; 0 – отключить трассировку</td>
</tr>
<tr>
<td>smgSyslogTracesRTP</td>
<td>1.3.6.1.4.1.35265.1.29.34.1.8</td>
<td>Get {} Set() N</td>
<td>Уровень трассировки RTP 1-99 – включить трассировку; 0 – отключить трассировку</td>
</tr>
<tr>
<td>smgSyslogTracesMSP</td>
<td>1.3.6.1.4.1.35265.1.29.34.1.9</td>
<td>Get {} Set() N</td>
<td>Уровень трассировки команд голосовых субмодулей 1-99 – включить трассировку; 0 – отключить трассировку</td>
</tr>
<tr>
<td>smgSyslogTracesRadius</td>
<td>1.3.6.1.4.1.35265.1.29.34.1.10</td>
<td>Get {} Set() N</td>
<td>Уровень трассировки RADIUS 1-99 – включить трассировку; 0 – отключить трассировку</td>
</tr>
<tr>
<td>smgSyslogTracesRowStatus</td>
<td>1.3.6.1.4.1.35265.1.29.34.1.11</td>
<td>Get {} Set() i 1</td>
<td>Применить изменения в конфигурации трассировок</td>
</tr>
<tr>
<td>smgSyslogHistory</td>
<td>1.3.6.1.4.1.35265.1.29.34.2</td>
<td>Get {}</td>
<td>Настройки логирования истории команд в syslog, корневой объект</td>
</tr>
<tr>
<td>smgSyslogHistoryAddress</td>
<td>1.3.6.1.4.1.35265.1.29.34.2.1</td>
<td>Get {} Set() S</td>
<td>IP-адрес сервера syslog для приёма истории команд</td>
</tr>
<tr>
<td>smgSyslogHistoryPort</td>
<td>1.3.6.1.4.1.35265.1.29.34.2.2</td>
<td>Get {} Set() N</td>
<td>Порт сервера syslog для приёма истории команд</td>
</tr>
<tr>
<td>smgSyslogHistoryLevel</td>
<td>1.3.6.1.4.1.35265.1.29.34.2.3</td>
<td>Get {} Set() N</td>
<td>Уровень детализации логов 0 – отключить логирование;</td>
</tr>
<tr>
<td>Имя</td>
<td>ОИД</td>
<td>Запросы</td>
<td>Описание</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>smgSyslogHistoryRowStatus</td>
<td>1.3.6.1.4.1.35265.1.29.34.2.4</td>
<td>Get {} Set {} 1</td>
<td>Применить изменения в логировании истории команд</td>
</tr>
<tr>
<td>smgSyslogConfig</td>
<td>1.3.6.1.4.1.35265.1.29.34.3</td>
<td>Get {}</td>
<td>Настройки системного журнала</td>
</tr>
<tr>
<td>smgSyslogConfigLogsEnabled</td>
<td>1.3.6.1.4.1.35265.1.29.34.3.1</td>
<td>Get {} Set {} N</td>
<td>Включить ведение логов 1 – включить; 2 – выключить</td>
</tr>
<tr>
<td>smgSyslogConfigSendToServer</td>
<td>1.3.6.1.4.1.35265.1.29.34.3.2</td>
<td>Get {} Set {} N</td>
<td>Отправлять сообщения на сервер syslog 1 – включить; 2 – выключить</td>
</tr>
<tr>
<td>smgSyslogConfigAddress</td>
<td>1.3.6.1.4.1.35265.1.29.34.3.3</td>
<td>Get {} Set {} S</td>
<td>IP-адрес сервера syslog</td>
</tr>
<tr>
<td>smgSyslogConfigPort</td>
<td>1.3.6.1.4.1.35265.1.29.34.3.4</td>
<td>Get {} Set {} N</td>
<td>Порт сервера syslog</td>
</tr>
<tr>
<td>smgSyslogConfigRowStatus</td>
<td>1.3.6.1.4.1.35265.1.29.34.3.5</td>
<td>Get {} Set {} 1</td>
<td>Применить изменения в настройках системного журнала</td>
</tr>
</tbody>
</table>

Таблица 3.4 – Мониторинг потоков Е1

<table>
<thead>
<tr>
<th>Имя</th>
<th>ОИД</th>
<th>Запросы</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>smgEOneTable</td>
<td>1.3.6.1.4.1.35265.1.29.7</td>
<td>Get {}</td>
<td>Таблица с физическим состоянием потоков Е1</td>
</tr>
<tr>
<td>eOneLineInfoPhyState</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.2 1.3.6.1.4.1.35265.1.29.7.1.2.x</td>
<td>Get {} Get {}.x</td>
<td>Физическое состояние потока Е1. Для получения состояния конкретного потока надо дополнить ОИД его номером (0..15) Состояния потока: 0 – поток отключен; 1 – ALARM; 2 – LOS; 3 – AIS; 4 – LOM; 5 – LOMF; 6 – поток в работе; 7 – на потоке включен PRBS-тест.</td>
</tr>
<tr>
<td>eOneLineInfoRemAlarm</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.3 1.3.6.1.4.1.35265.1.29.7.1.3.x</td>
<td>Get {} Get {}.x</td>
<td>Наличие на потоке сигнала RAI – ошибка на удалённой стороне. Для получения состояния конкретного потока надо дополнить ОИД его номером (0..15) 0 – нормальное состояние; 1 – полученный сигнал RAI.</td>
</tr>
<tr>
<td>eOneLineInfoRemAlarmT16</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.4 1.3.6.1.4.1.35265.1.29.7.1.4.x</td>
<td>Get {} Get {}.x</td>
<td>Наличие на потоке сигнала RAI16 - ошибка на удалённой стороне по 16 канальному интервалу. Для получения состояния конкретного потока надо дополнить ОИД его номером (0..15) 0 – нормальное состояние; 1 – полученный сигнал RAI16.</td>
</tr>
<tr>
<td>Имя</td>
<td>OID</td>
<td>Запросы</td>
<td>Описание</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>eOneLineStateAlarm</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.5</td>
<td>Get {}</td>
<td>Состояние аварий на потоке. Для получения состояния конкретного потока надо дополнить OID его номером (0..15)</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.5.x</td>
<td>Get {}.x</td>
<td>0 – нормальное состояние; 1 – получен сигнал RAI16.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 – аварий нет или поток выключен; 1 – критическая авария, поток не в работе; 2 – авария, есть ошибки; 3 – код не используется; 4 – авария, ошибка RAI.</td>
</tr>
<tr>
<td>eOneLineStatePhyWork</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.6</td>
<td>Get {}</td>
<td>Состояние физического соединения на потоке (приём сигнала). Для получения состояния конкретного потока надо дополнить OID его номером (0..15)</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.6.x</td>
<td>Get {}.x</td>
<td>0 – нет сигнала; 1 – сигнал есть.</td>
</tr>
<tr>
<td>eOneLinkState</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.7</td>
<td>Get {}</td>
<td>Общее состояние соединения. Для получения состояния конкретного потока надо дополнить OID его номером (0..15)</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.7.x</td>
<td>Get {}.x</td>
<td>0 – поток не работает; 1 – поток работает;</td>
</tr>
<tr>
<td>eOneStatistTimer</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.9</td>
<td>Get {}</td>
<td>Время сбора статистики, секунды. Для получения состояния конкретного потока надо дополнить OID его номером (0..15).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.9.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>eOneSlipUp</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.10</td>
<td>Get {}</td>
<td>Проскальзывания (повтор фрейма). Для получения состояния конкретного потока надо дополнить OID его номером (0..15).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.10.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>eOneSlipDown</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.11</td>
<td>Get {}</td>
<td>Проскальзывания (потеря фрейма). Для получения состояния конкретного потока надо дополнить OID его номером (0..15).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.11.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>eOneBERCount</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.12</td>
<td>Get {}</td>
<td>Битовые ошибки. Для получения состояния конкретного потока надо дополнить OID его номером (0..15).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.12.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>eOneCVC</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.13</td>
<td>Get {}</td>
<td>Ошибки сбоя сигнала. Для получения состояния конкретного потока надо дополнить OID его</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.13.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
</tbody>
</table>

Цифровой шлюз SMG
<table>
<thead>
<tr>
<th>Имя</th>
<th>OID</th>
<th>Запросы</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>eOneCEC</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.14</td>
<td>Get {}</td>
<td>Счётчик ошибок CRC/PRBS. Для получения состояния конкретного потока надо дополнить OID его номером (0..15).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.14.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>eOneRxCount</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.16</td>
<td>Get {}</td>
<td>Принято байт. Для получения состояния конкретного потока надо дополнить OID его номером (0..15).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.16.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>eOneTxCount</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.17</td>
<td>Get {}</td>
<td>Передано байт. Для получения состояния конкретного потока надо дополнить OID его номером (0..15).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.17.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>eOneRxLow</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.18</td>
<td>Get {}</td>
<td>Принято коротких пакетов. Для получения состояния конкретного потока надо дополнить OID его номером (0..15).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.18.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>eOneRxBig</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.19</td>
<td>Get {}</td>
<td>Принято длинных пакетов. Для получения состояния конкретного потока надо дополнить OID его номером (0..15).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.19.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>eOneRxOvfl</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.20</td>
<td>Get {}</td>
<td>Переполнение приёмника. Для получения состояния конкретного потока надо дополнить OID его номером (0..15).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.20.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>eOneRxCRC</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.21</td>
<td>Get {}</td>
<td>Ошибки CRC. Для получения состояния конкретного потока надо дополнить OID его номером (0..15).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>eOneTxUrun</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.22</td>
<td>Get {}</td>
<td>Сбои передачи. Для получения состояния конкретного потока надо дополнить OID его номером (0..15).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>smgEOneChannelTable</td>
<td>1.3.6.1.4.1.35265.1.29.13</td>
<td>Get {}</td>
<td>Таблица состояний каналов потоков E1, корневой объект.</td>
</tr>
<tr>
<td>smgEOneChannelEntry</td>
<td>1.3.6.1.4.1.35265.1.29.13.1</td>
<td>Get {}</td>
<td>см. smgEOneChannelTable</td>
</tr>
<tr>
<td>channelEOneState</td>
<td>1.3.6.1.4.1.35265.1.29.13.1.2</td>
<td>Get {}</td>
<td>Состояние канала потока E1. Для получения состояния конкретного потока надо дополнить OID номером потока (0..15).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.13.1.2.x</td>
<td>Get {}.x</td>
<td>Для получения состояния конкретного канала надо дополнить OID номером потока (0..15) и номером канала (0..31).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.13.1.2.x.x</td>
<td>Get {}.x.x</td>
<td></td>
</tr>
<tr>
<td>smgEOneBusyChannelsCounters</td>
<td>1.3.6.1.4.1.35265.1.29.31</td>
<td>Get {}</td>
<td>Количество занятых каналов потоков E1, корневой объект.</td>
</tr>
<tr>
<td>Имя</td>
<td>OID</td>
<td>Запросы</td>
<td>Описание</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>smgEOneInstantCounters</td>
<td>1.3.6.1.4.1.35265.1.29.31.1</td>
<td>Get {}</td>
<td>см. smgEOneBusyChannelsCounters</td>
</tr>
<tr>
<td>smgEOneStream0BusyChannelsInstantCounter</td>
<td>1.3.6.1.4.1.35265.1.29.31.1.0</td>
<td>Get {}</td>
<td>Количество занятых каналов потока E1 0</td>
</tr>
<tr>
<td>smgEOneStream1BusyChannelsInstantCounter</td>
<td>1.3.6.1.4.1.35265.1.29.31.1.1</td>
<td>Get {}</td>
<td>Количество занятых каналов потока E1 1</td>
</tr>
<tr>
<td>smgEOneStream2BusyChannelsInstantCounter</td>
<td>1.3.6.1.4.1.35265.1.29.31.1.2</td>
<td>Get {}</td>
<td>Количество занятых каналов потока E1 2</td>
</tr>
<tr>
<td>smgEOneStream3BusyChannelsInstantCounter</td>
<td>1.3.6.1.4.1.35265.1.29.31.1.3</td>
<td>Get {}</td>
<td>Количество занятых каналов потока E1 3</td>
</tr>
<tr>
<td>smgEOnePeriodicCounters</td>
<td>1.3.6.1.4.1.35265.1.29.31.2</td>
<td>Get {}</td>
<td>Количество занятых каналов потоков E1 за выбранный период (см. smgEOneCounterPeriod)</td>
</tr>
<tr>
<td>smgEOneStream0BusyChannelsPeriodicCounter</td>
<td>1.3.6.1.4.1.35265.1.29.31.2.0</td>
<td>Get {}</td>
<td>Количество занятых каналов потока E1 0 за выбранный период (см. smgEOneCounterPeriod)</td>
</tr>
<tr>
<td>smgEOneStream1BusyChannelsPeriodicCounter</td>
<td>1.3.6.1.4.1.35265.1.29.31.2.1</td>
<td>Get {}</td>
<td>Количество занятых каналов потока E1 1 за выбранный период (см. smgEOneCounterPeriod)</td>
</tr>
<tr>
<td>smgEOneStream2BusyChannelsPeriodicCounter</td>
<td>1.3.6.1.4.1.35265.1.29.31.2.2</td>
<td>Get {}</td>
<td>Количество занятых каналов потока E1 2 за выбранный период (см. smgEOneCounterPeriod)</td>
</tr>
<tr>
<td>smgEOneStream3BusyChannelsPeriodicCounter</td>
<td>1.3.6.1.4.1.35265.1.29.31.2.3</td>
<td>Get {}</td>
<td>Количество занятых каналов потока E1 3 за выбранный период (см. smgEOneCounterPeriod)</td>
</tr>
<tr>
<td>smgEOneCounterPeriod</td>
<td>1.3.6.1.4.1.35265.1.29.31.2.16</td>
<td>Get {}</td>
<td>Период сбора статистики, в минутах. Статистика будет накапливаться в периодических счётчиках, при этом счётчик будет отображать значение за предыдущий период.</td>
</tr>
</tbody>
</table>

Таблица 3.5 – Мониторинг линксетов ОКС-7

<table>
<thead>
<tr>
<th>Имя</th>
<th>OID</th>
<th>Запросы</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>smgLinkSetTable</td>
<td>1.3.6.1.4.1.35265.1.29.11</td>
<td>Get {}</td>
<td>Состояния линксетов ОКС-7, корневой объект.</td>
</tr>
<tr>
<td>linkSetEntry</td>
<td>1.3.6.1.4.1.35265.1.29.11.1</td>
<td>Get {}</td>
<td>см. smgLinkSetTable</td>
</tr>
<tr>
<td>linkSetState</td>
<td>1.3.6.1.4.1.35265.1.29.11.1.2</td>
<td>Get {}</td>
<td>Состояние линксетов ОКС-7. Для получения состояния конкретного линксета надо дополнить OID его индексом (0..15).</td>
</tr>
</tbody>
</table>

Таблица 3.6 – Мониторинг субмодулей SM-VP (VoIP субмодулей)

<table>
<thead>
<tr>
<th>Имя</th>
<th>OID</th>
<th>Запросы</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>smgMspTable</td>
<td>1.3.6.1.4.1.35265.1.29.9</td>
<td>Get {}</td>
<td>Статистики состояния VoIP-</td>
</tr>
<tr>
<td>Имя</td>
<td>OID</td>
<td>Запросы</td>
<td>Описание</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>mspEntry</td>
<td>1.3.6.1.4.1.35265.1.29.9.1</td>
<td>Get {}</td>
<td>субмодулей, корневой объект.</td>
</tr>
<tr>
<td>mspState</td>
<td>1.3.6.1.4.1.35265.1.29.9.1.2</td>
<td>Get {}, Get {}.x</td>
<td>Режим работы VoIP-субмодуля. Для получения состояния</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>конкретного субмодуля надо дополнить OID его номером</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0..5).</td>
</tr>
<tr>
<td>mspUsedConn</td>
<td>1.3.6.1.4.1.35265.1.29.9.1.3</td>
<td>Get {}, Get {}.x</td>
<td>Число использованных каналов субмодуля. Для получения</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>состояния конкретного субмодуля надо дополнить OID его</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>номером (0..5).</td>
</tr>
<tr>
<td>mspCreateReq</td>
<td>1.3.6.1.4.1.35265.1.29.9.1.4</td>
<td>Get {}, Get {}.x</td>
<td>Накопительный счётчик запросов к модулю на создание</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>соединений. Для получения состояния конкретного</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>субмодуля надо дополнить OID его номером (0..5).</td>
</tr>
<tr>
<td>mspCreated</td>
<td>1.3.6.1.4.1.35265.1.29.9.1.5</td>
<td>Get {}, Get {}.x</td>
<td>Накопительный счётчик выполненных запросов к модулю на</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>создание соединений. Для получения состояния конкретного</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>субмодуля надо дополнить OID его номером (0..5).</td>
</tr>
<tr>
<td>mspDestroyReq</td>
<td>1.3.6.1.4.1.35265.1.29.9.1.6</td>
<td>Get {}, Get {}.x</td>
<td>Накопительный счётчик запросов к модулю на удаление</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>соединений. Для получения состояния конкретного</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>субмодуля надо дополнить OID его номером (0..5).</td>
</tr>
<tr>
<td>mspDestroyed</td>
<td>1.3.6.1.4.1.35265.1.29.9.1.7</td>
<td>Get {}, Get {}.x</td>
<td>Накопительный счётчик выполненных запросов к модулю на</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>удаление соединений. Для получения состояния конкретного</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>субмодуля надо дополнить OID его номером (0..5).</td>
</tr>
<tr>
<td>mspPayload</td>
<td>1.3.6.1.4.1.35265.1.29.9.1.8</td>
<td>Get {}, Get {}.x</td>
<td>Загрузка субмодуля в % от общего числа каналов. Для</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>получения состояния конкретного субмодуля надо дополнить</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OID его номером (0..5).</td>
</tr>
<tr>
<td>Имя</td>
<td>ОИД</td>
<td>Запросы</td>
<td>Описание</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>smgpMspChannelTable</td>
<td>1.3.6.1.4.1.35265.1.29.15</td>
<td>Get {}</td>
<td>Статистики состояния активных каналов VoIP-субмодулей, корневой объект.</td>
</tr>
<tr>
<td>smgpMspIpChannelEntry</td>
<td>1.3.6.1.4.1.35265.1.29.15.1</td>
<td>Get {}</td>
<td>см. smgpMspChannelTable</td>
</tr>
<tr>
<td>ipMspChannelState</td>
<td>1.3.6.1.4.1.35265.1.29.15.1.2</td>
<td>Get {}</td>
<td>Состояние активных каналов. Для получения состояния конкретного субмодуля надо дополнить ОИД его номером (0..5). Для получения состояния конкретного канала надо дополнить ОИД номером субмодуля (0..5) и номером канала (0..127). 0 – свободен; 1 – выделение канала; 2 – запрос на выделение канала; 3 – отработан запрос на выделение канала; 4 – запрос на освобождение канала; 5 – отработан запрос на отключение канала; 6 – запрос на отключение канала; 7 – запрос на активацию канала; 8 – в работе; 9 – активирован; 10 – запрос на включение в конференцию; 11 – конференция активна.</td>
</tr>
<tr>
<td>ipMspChannelSiptCallref</td>
<td>1.3.6.1.4.1.35265.1.29.15.1.3</td>
<td>Get {}</td>
<td>Локальный идентификатор вызова, связанного с активным каналом. Для получения состояния конкретного субмодуля надо дополнить ОИД его номером (0..5). Для получения состояния конкретного канала надо дополнить ОИД номером субмодуля (0..5) и номером канала (0..127).</td>
</tr>
<tr>
<td>ipMspChannelSrcIp</td>
<td>1.3.6.1.4.1.35265.1.29.15.1.4</td>
<td>Get {}</td>
<td>Локальный IP-адрес медиапотока. Для получения состояния конкретного субмодуля надо дополнить ОИД его номером (0..5). Для получения состояния конкретного канала надо дополнить ОИД номером субмодуля (0..5) и номером канала (0..127).</td>
</tr>
<tr>
<td>Имя</td>
<td>OID</td>
<td>Запросы</td>
<td>Описание</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| ipMspChannelSrcPort | 1.3.6.1.4.1.35265.1.29.15.1.5
1.3.6.1.4.1.35265.1.29.15.1.5.x
1.3.6.1.4.1.35265.1.29.15.1.5.x.x | Get {}
Get {}.x
Get {}.x.x | Локальный порт медиапотока. ДЛя получения состояния конкретного канала надо дополнить OID номером субмодуля (0..5) и номером канала (0..127). |
| ipMspChannelSrcMac | 1.3.6.1.4.1.35265.1.29.15.1.6
1.3.6.1.4.1.35265.1.29.15.1.6.x
1.3.6.1.4.1.35265.1.29.15.1.6.x.x | Get {}
Get {}.x
Get {}.x.x | Локальный MAC-адрес медиапотока. ДЛя получения состояния конкретного канала надо дополнить OID номером субмодуля (0..5) и номером канала (0..127). |
| ipMspChannelDstIp | 1.3.6.1.4.1.35265.1.29.15.1.7
1.3.6.1.4.1.35265.1.29.15.1.7.x
1.3.6.1.4.1.35265.1.29.15.1.7.x.x | Get {}
Get {}.x
Get {}.x.x | Удалённый IP-адрес медиапотока. ДЛя получения состояния конкретного канала надо дополнить OID номером субмодуля (0..5) и номером канала (0..127). |
| ipMspChannelDstPort | 1.3.6.1.4.1.35265.1.29.15.1.8
1.3.6.1.4.1.35265.1.29.15.1.8.x
1.3.6.1.4.1.35265.1.29.15.1.8.x.x | Get {}
Get {}.x
Get {}.x.x | Удалённый порт медиапотока. ДЛя получения состояния конкретного канала надо дополнить OID номером субмодуля (0..5) и номером канала (0..127). |
| ipMspChannelDstMac | 1.3.6.1.4.1.35265.1.29.15.1.9
1.3.6.1.4.1.35265.1.29.15.1.9.x
1.3.6.1.4.1.35265.1.29.15.1.9.x.x | Get {}
Get {}.x
Get {}.x.x | Удалённый MAC-адрес медиапотока. ДЛя получения состояния конкретного канала надо дополнить OID номером субмодуля (0..5) и номером канала (0..127). |
Имя | OID | Запросы | Описание
--- | --- | --- | ---
Цифровой шлюз SMG

<table>
<thead>
<tr>
<th>Имя</th>
<th>OID</th>
<th>Запросы</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipMspChannelCallingPartyNumber</td>
<td>1.3.6.1.4.1.35265.1.29.15.1.10</td>
<td>Get {}</td>
<td>Номер вызывающего. Для получения состояния конкретного канала надо дополнить OID номером субмодуля (0..5) и номером канала (0..127).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.15.1.10.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.15.1.10.x.x</td>
<td>Get {}.x.x</td>
<td></td>
</tr>
<tr>
<td>ipMspChannelCalledPartyNumber</td>
<td>1.3.6.1.4.1.35265.1.29.15.1.11</td>
<td>Get {}</td>
<td>Номер вызываемого. Для получения состояния конкретного субмодуля надо дополнить OID его номером (0..5). Для получения состояния конкретного канала надо дополнить OID номером субмодуля (0..5) и номером канала (0..127).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.15.1.11.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.15.1.11.x.x</td>
<td>Get {}.x.x</td>
<td></td>
</tr>
<tr>
<td>ipMspChannelOccupiedTime</td>
<td>1.3.6.1.4.1.35265.1.29.15.1.12</td>
<td>Get {}</td>
<td>Длительность вызова. Для получения состояния конкретного субмодуля надо дополнить OID его номером (0..5). Для получения состояния конкретного канала надо дополнить OID номером субмодуля (0..5) и номером канала (0..127).</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.15.1.12.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.15.1.12.x.x</td>
<td>Get {}.x.x</td>
<td></td>
</tr>
</tbody>
</table>

Таблица З.7 – CAPS статистика

<table>
<thead>
<tr>
<th>Имя</th>
<th>OID</th>
<th>Запросы</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>smgCapsStats</td>
<td>1.3.6.1.4.1.35265.1.29.44</td>
<td>Get {}</td>
<td>CAPS статистика, корневой объект</td>
</tr>
<tr>
<td>smgCaps10secTotal</td>
<td>1.3.6.1.4.1.35265.1.29.44.1.0</td>
<td>Get {}</td>
<td>Общая CAPS статистика за 10 секунд</td>
</tr>
<tr>
<td>smgCaps10secUsers</td>
<td>1.3.6.1.4.1.35265.1.29.44.2.0</td>
<td>Get {}</td>
<td>CAPS статистика собственных пользователей за 10 секунд</td>
</tr>
<tr>
<td>smgCaps10secInvalid</td>
<td>1.3.6.1.4.1.35265.1.29.44.3.0</td>
<td>Get {}</td>
<td>CAPS статистика невалидных вызовов за 10 секунд</td>
</tr>
<tr>
<td>smgCaps10secByTrunk</td>
<td>1.3.6.1.4.1.35265.1.29.44.4</td>
<td>Get {}</td>
<td>Таблица CAPS статистики транковых групп</td>
</tr>
</tbody>
</table>
Устаревшие OID

Некоторые OID были изменены и в последующих релизах старые ветки могут быть удалены или заменены новыми назначениями. Рекомендуется перенастроить системы мониторинга и скрипты на использование новых OID.

Таблица 3.8 – Устаревшие OID

<table>
<thead>
<tr>
<th>Имя</th>
<th>OID</th>
<th>Запросы</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>eOneRSV</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.8</td>
<td>Get {}</td>
<td>Не используется</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.8.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
<tr>
<td>eOneRxEqualizer</td>
<td>1.3.6.1.4.1.35265.1.29.7.1.15</td>
<td>Get {}</td>
<td>Не поддерживается в новых версиях аппаратного обеспечения, всегда – 1</td>
</tr>
<tr>
<td></td>
<td>1.3.6.1.4.1.35265.1.29.7.1.15.x</td>
<td>Get {}.x</td>
<td></td>
</tr>
</tbody>
</table>

Поддержка OID MIB-2 (1.3.6.1.2.1)

SMG поддерживает следующие ветки MIB-2:
- system (1.3.6.1.2.1.1) – общая информация о системе;
- interfaces (1.3.6.1.2.1.2) – информация о сетевых интерфейсах;
- snmp (1.3.6.1.2.1.11) – информация о работе SNMP.
ТЕХНИЧЕСКАЯ ПОДДЕРЖКА

Для получения технической консультации по вопросам эксплуатации оборудования ООО «Предприятие «ЭЛТЕКС» Вы можете обратиться в Сервисный центр компании:

Российская Федерация, 630020, г. Новосибирск, ул. Окружная, дом 29В.
Телефон:
+7(383)274-47-88
+7(383) 274-47-87
+7(383) 272-83-31
E-mail: techsupp@eltex.nsk.ru

На официальном сайте компании Вы можете найти техническую документацию и программное обеспечение для продукции ООО «Предприятие «ЭЛТЕКС», обратиться к базе знаний, оставить интерактивную заявку или проконсультироваться у инженеров Сервисного центра на техническом форуме:

http://eltex-co.ru
http://eltex-co.ru/downloads
http://eltex-co.ru/forum